{"title":"Advances in Synthetic Lethality in Potential Oncology Therapeutic Approaches.","authors":"Feifei Yang, Huiyu Wang, Shule Fan, Huiran Qiu, Xiangzhi Li, Guangyao Shi, Zihao Li, Xiaotian Luan, Haigang Wu","doi":"10.2174/0115680266349547241231051447","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic lethality represents a novel paradigm in molecular targeted cancer therapy. In synthetic lethality, perturbation of one gene alone does not hinder cell viability, yet simultaneous perturbation of both genes results in a loss of cellular viability. The presence of gene mutations in cancer cells, as opposed to normal cells, provides an opportunity for targeted therapies that mimic the effects of the second genetic mutation, enabling selective eradication of cancer cells. Recent advances in high-throughput screening technologies, such as CRISPR-Cas9 and RNA interference, have significantly enhanced the identification of synthetic lethal interactions, expanding the potential targets for therapeutic intervention. Challenges in exploiting synthetic lethality for cancer treatment include the complexities of tumor biology, limited comprehension of synthetic lethal interactions, drug resistance, and impediments in screening and clinical translation. Emerging strategies, such as combination therapies and novel drug designs, are being developed to overcome these obstacles. By virtue of its selective lethality towards cancer cells bearing specific genetic alterations, targeting synthetic lethal genes holds the promise to provide wider therapeutic windows compared to traditional cytotoxic chemotherapy. This review describes the current state of synthetic lethality applications in cancer treatment, encompassing both biological and methodological perspectives. It highlights the latest advancements in synthetic lethality with emerging interventional strategies. Furthermore, it explores future directions for research and clinical implementation, aiming to refine and expand the therapeutic potential of synthetic lethality in oncology.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266349547241231051447","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic lethality represents a novel paradigm in molecular targeted cancer therapy. In synthetic lethality, perturbation of one gene alone does not hinder cell viability, yet simultaneous perturbation of both genes results in a loss of cellular viability. The presence of gene mutations in cancer cells, as opposed to normal cells, provides an opportunity for targeted therapies that mimic the effects of the second genetic mutation, enabling selective eradication of cancer cells. Recent advances in high-throughput screening technologies, such as CRISPR-Cas9 and RNA interference, have significantly enhanced the identification of synthetic lethal interactions, expanding the potential targets for therapeutic intervention. Challenges in exploiting synthetic lethality for cancer treatment include the complexities of tumor biology, limited comprehension of synthetic lethal interactions, drug resistance, and impediments in screening and clinical translation. Emerging strategies, such as combination therapies and novel drug designs, are being developed to overcome these obstacles. By virtue of its selective lethality towards cancer cells bearing specific genetic alterations, targeting synthetic lethal genes holds the promise to provide wider therapeutic windows compared to traditional cytotoxic chemotherapy. This review describes the current state of synthetic lethality applications in cancer treatment, encompassing both biological and methodological perspectives. It highlights the latest advancements in synthetic lethality with emerging interventional strategies. Furthermore, it explores future directions for research and clinical implementation, aiming to refine and expand the therapeutic potential of synthetic lethality in oncology.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.