A hammerhead ribozyme selects mechanically stable conformations for catalysis against viral RNA.

IF 5.2 1区 生物学 Q1 BIOLOGY
Man Lu, Zhiqiang Cao, Luoan Xiong, Hongying Deng, Kangkang Ma, Ning Liu, Yanding Qin, Shen-Bo Chen, Jun-Hu Chen, Yao Li, Yijin Liu, Zhongbo Yu
{"title":"A hammerhead ribozyme selects mechanically stable conformations for catalysis against viral RNA.","authors":"Man Lu, Zhiqiang Cao, Luoan Xiong, Hongying Deng, Kangkang Ma, Ning Liu, Yanding Qin, Shen-Bo Chen, Jun-Hu Chen, Yao Li, Yijin Liu, Zhongbo Yu","doi":"10.1038/s42003-025-07600-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ribozymes, widely found in prokaryotes and eukaryotes, target nucleic acids and can be engineered as biotechnical tools or for gene regulation or immune therapy. Among them, hammerhead is the smallest and best characterized ribozyme. However, the structure and biochemical data of ribozymes have been disagreed on, making the understanding of its catalysis mechanism a longstanding issue. Particularly, the role of conformational dynamics in ribozyme catalysis remains elusive. Here, we use single-molecule magnetic tweezers to reveal a concerted catalysis mechanism of mechanical conformational selection for a mini hammerhead ribozyme against a viral RNA sequence from the SARS-CoV-2. We identify a conformational set containing five mechanical conformers of the mini ribozyme, where magnesium ions select the active one. Our results are supported by molecular dynamics simulations. Our understanding of the RNA catalytic mechanism will be beneficial for ribozyme's biotechnological applications and as potential therapeutics against RNA viruses.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"165"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07600-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ribozymes, widely found in prokaryotes and eukaryotes, target nucleic acids and can be engineered as biotechnical tools or for gene regulation or immune therapy. Among them, hammerhead is the smallest and best characterized ribozyme. However, the structure and biochemical data of ribozymes have been disagreed on, making the understanding of its catalysis mechanism a longstanding issue. Particularly, the role of conformational dynamics in ribozyme catalysis remains elusive. Here, we use single-molecule magnetic tweezers to reveal a concerted catalysis mechanism of mechanical conformational selection for a mini hammerhead ribozyme against a viral RNA sequence from the SARS-CoV-2. We identify a conformational set containing five mechanical conformers of the mini ribozyme, where magnesium ions select the active one. Our results are supported by molecular dynamics simulations. Our understanding of the RNA catalytic mechanism will be beneficial for ribozyme's biotechnological applications and as potential therapeutics against RNA viruses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信