Bhavana Raj, Prajitha Pg, Harika Sapa, Shona Sara Shaji, Sreejith T, Althaf Umar Kp, Kaladhar K, Praveen Varma
{"title":"Small-Diameter Stents in Cardiovascular Applications.","authors":"Bhavana Raj, Prajitha Pg, Harika Sapa, Shona Sara Shaji, Sreejith T, Althaf Umar Kp, Kaladhar K, Praveen Varma","doi":"10.1002/cbdv.202402008","DOIUrl":null,"url":null,"abstract":"<p><p>Small-diameter stents play a crucial role in treating congenital heart diseases and variety of vascular conditions that have application from paediatrics to geriatric conditions, and a comprehensive review in this direction is lacking. This review explores historical development, design innovations, material compositions and mechanistic insights into functions of small-diameter stents, with a specific emphasis on biodegradable options. The necessity for stents that can adapt to growth of paediatric patients is discussed, highlighting the transition from durable polymers to bioresorbable materials such as polylactic acid (PLA) and magnesium alloys. While acknowledging the advancements made in reducing complications like restenosis and thrombosis, the review addresses the challenges that persist, including the need for improved biocompatibility and minimization of late adverse cardiac events associated with certain stent technologies. A detailed examination of various stent generations emphasizes the importance of drug release kinetics, structural integrity and potential for personalized interventions based on patient-specific factors. The exploration of novel therapeutic compounds, including nanoparticles and interfering RNA, illustrates the ongoing research aimed at enhancing stent efficacy. Ultimately, the review seeks to provide a comprehensive understanding of current landscape while identifying the gaps that future research must address to develop the ideal stent for diverse patient populations.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202402008"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202402008","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small-diameter stents play a crucial role in treating congenital heart diseases and variety of vascular conditions that have application from paediatrics to geriatric conditions, and a comprehensive review in this direction is lacking. This review explores historical development, design innovations, material compositions and mechanistic insights into functions of small-diameter stents, with a specific emphasis on biodegradable options. The necessity for stents that can adapt to growth of paediatric patients is discussed, highlighting the transition from durable polymers to bioresorbable materials such as polylactic acid (PLA) and magnesium alloys. While acknowledging the advancements made in reducing complications like restenosis and thrombosis, the review addresses the challenges that persist, including the need for improved biocompatibility and minimization of late adverse cardiac events associated with certain stent technologies. A detailed examination of various stent generations emphasizes the importance of drug release kinetics, structural integrity and potential for personalized interventions based on patient-specific factors. The exploration of novel therapeutic compounds, including nanoparticles and interfering RNA, illustrates the ongoing research aimed at enhancing stent efficacy. Ultimately, the review seeks to provide a comprehensive understanding of current landscape while identifying the gaps that future research must address to develop the ideal stent for diverse patient populations.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.