Mapping and modeling age-related changes in intrinsic neural timescales.

IF 5.2 1区 生物学 Q1 BIOLOGY
Kaichao Wu, Leonardo L Gollo
{"title":"Mapping and modeling age-related changes in intrinsic neural timescales.","authors":"Kaichao Wu, Leonardo L Gollo","doi":"10.1038/s42003-025-07517-x","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsic timescales of brain regions exhibit heterogeneity, escalating with hierarchical levels, and are crucial for the temporal integration of external stimuli. Aging, often associated with cognitive decline, involves progressive neuronal and synaptic loss, reshaping brain structure and dynamics. However, the impact of these structural changes on temporal coding in the aging brain remains unclear. We mapped intrinsic timescales and gray matter volume (GMV) using magnetic resonance imaging (MRI) in young and elderly adults. We found shorter intrinsic timescales across multiple large-scale functional networks in the elderly cohort, and a significant positive association between intrinsic timescales and GMV. Additionally, age-related decline in performance on visual discrimination tasks was linked to a reduction in intrinsic timescales in the cuneus. To explain these age-related shifts, we developed an age-dependent spiking neuron network model. In younger subjects, brain regions were near a critical branching regime, while regions in elderly subjects had fewer neurons and synapses, pushing the dynamics toward a subcritical regime. The model accurately reproduced the empirical results, showing longer intrinsic timescales in young adults due to critical slowing down. Our findings reveal how age-related structural brain changes may drive alterations in brain dynamics, offering testable predictions and informing possible interventions targeting cognitive decline.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"167"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07517-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsic timescales of brain regions exhibit heterogeneity, escalating with hierarchical levels, and are crucial for the temporal integration of external stimuli. Aging, often associated with cognitive decline, involves progressive neuronal and synaptic loss, reshaping brain structure and dynamics. However, the impact of these structural changes on temporal coding in the aging brain remains unclear. We mapped intrinsic timescales and gray matter volume (GMV) using magnetic resonance imaging (MRI) in young and elderly adults. We found shorter intrinsic timescales across multiple large-scale functional networks in the elderly cohort, and a significant positive association between intrinsic timescales and GMV. Additionally, age-related decline in performance on visual discrimination tasks was linked to a reduction in intrinsic timescales in the cuneus. To explain these age-related shifts, we developed an age-dependent spiking neuron network model. In younger subjects, brain regions were near a critical branching regime, while regions in elderly subjects had fewer neurons and synapses, pushing the dynamics toward a subcritical regime. The model accurately reproduced the empirical results, showing longer intrinsic timescales in young adults due to critical slowing down. Our findings reveal how age-related structural brain changes may drive alterations in brain dynamics, offering testable predictions and informing possible interventions targeting cognitive decline.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信