Computational biology and artificial intelligence in mRNA vaccine design for cancer immunotherapy.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Frontiers in Cellular and Infection Microbiology Pub Date : 2025-01-20 eCollection Date: 2024-01-01 DOI:10.3389/fcimb.2024.1501010
Saber Imani, Xiaoyan Li, Keyi Chen, Mazaher Maghsoudloo, Parham Jabbarzadeh Kaboli, Mehrdad Hashemi, Saloomeh Khoushab, Xiaoping Li
{"title":"Computational biology and artificial intelligence in mRNA vaccine design for cancer immunotherapy.","authors":"Saber Imani, Xiaoyan Li, Keyi Chen, Mazaher Maghsoudloo, Parham Jabbarzadeh Kaboli, Mehrdad Hashemi, Saloomeh Khoushab, Xiaoping Li","doi":"10.3389/fcimb.2024.1501010","DOIUrl":null,"url":null,"abstract":"<p><p>Messenger RNA (mRNA) vaccines offer an adaptable and scalable platform for cancer immunotherapy, requiring optimal design to elicit a robust and targeted immune response. Recent advancements in bioinformatics and artificial intelligence (AI) have significantly enhanced the design, prediction, and optimization of mRNA vaccines. This paper reviews technologies that streamline mRNA vaccine development, from genomic sequencing to lipid nanoparticle (LNP) formulation. We discuss how accurate predictions of neoantigen structures guide the design of mRNA sequences that effectively target immune and cancer cells. Furthermore, we examine AI-driven approaches that optimize mRNA-LNP formulations, enhancing delivery and stability. These technological innovations not only improve vaccine design but also enhance pharmacokinetics and pharmacodynamics, offering promising avenues for personalized cancer immunotherapy.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"14 ","pages":"1501010"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788159/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2024.1501010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Messenger RNA (mRNA) vaccines offer an adaptable and scalable platform for cancer immunotherapy, requiring optimal design to elicit a robust and targeted immune response. Recent advancements in bioinformatics and artificial intelligence (AI) have significantly enhanced the design, prediction, and optimization of mRNA vaccines. This paper reviews technologies that streamline mRNA vaccine development, from genomic sequencing to lipid nanoparticle (LNP) formulation. We discuss how accurate predictions of neoantigen structures guide the design of mRNA sequences that effectively target immune and cancer cells. Furthermore, we examine AI-driven approaches that optimize mRNA-LNP formulations, enhancing delivery and stability. These technological innovations not only improve vaccine design but also enhance pharmacokinetics and pharmacodynamics, offering promising avenues for personalized cancer immunotherapy.

用于癌症免疫疗法的 mRNA 疫苗设计中的计算生物学和人工智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
1817
审稿时长
14 weeks
期刊介绍: Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信