CRISPR in clinical diagnostics: bridging the gap between research and practice.

IF 1.8 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Bioanalysis Pub Date : 2025-02-01 Epub Date: 2025-02-04 DOI:10.1080/17576180.2025.2459520
Zainab Lafi, Tha'er Ata, Sherine Asha
{"title":"CRISPR in clinical diagnostics: bridging the gap between research and practice.","authors":"Zainab Lafi, Tha'er Ata, Sherine Asha","doi":"10.1080/17576180.2025.2459520","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has transformed molecular biology through its precise gene-editing capabilities. Beyond its initial applications in genetic modification, CRISPR has emerged as a powerful tool in diagnostics and biosensing. This review explores its transition from genome editing to innovative detection methods, including nucleic acid identification, single nucleotide polymorphism (SNP) analysis, and protein sensing. Advanced technologies such as SHERLOCK and DETECTR demonstrate CRISPR's potential for point-of-care diagnostics, enabling rapid and highly sensitive detection. The integration of chemical modifications, CRISPR-Chip technology, and enzymatic systems like Cas12a and Cas13a enhances signal amplification and detection efficiency. These advancements promise decentralized, real-time diagnostic solutions with significant implications for global healthcare. Furthermore, the fusion of CRISPR with artificial intelligence and digital health platforms is paving the way for more accessible, cost-effective, and scalable diagnostic approaches, ultimately revolutionizing precision medicine.</p>","PeriodicalId":8797,"journal":{"name":"Bioanalysis","volume":" ","pages":"281-290"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866644/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioanalysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2025.2459520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) has transformed molecular biology through its precise gene-editing capabilities. Beyond its initial applications in genetic modification, CRISPR has emerged as a powerful tool in diagnostics and biosensing. This review explores its transition from genome editing to innovative detection methods, including nucleic acid identification, single nucleotide polymorphism (SNP) analysis, and protein sensing. Advanced technologies such as SHERLOCK and DETECTR demonstrate CRISPR's potential for point-of-care diagnostics, enabling rapid and highly sensitive detection. The integration of chemical modifications, CRISPR-Chip technology, and enzymatic systems like Cas12a and Cas13a enhances signal amplification and detection efficiency. These advancements promise decentralized, real-time diagnostic solutions with significant implications for global healthcare. Furthermore, the fusion of CRISPR with artificial intelligence and digital health platforms is paving the way for more accessible, cost-effective, and scalable diagnostic approaches, ultimately revolutionizing precision medicine.

临床诊断中的CRISPR:弥合研究与实践之间的差距。
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)通过其精确的基因编辑能力改变了分子生物学。除了最初用于基因改造之外,CRISPR已经成为诊断和生物传感领域的强大工具。本文综述了其从基因组编辑到创新检测方法的转变,包括核酸鉴定、单核苷酸多态性(SNP)分析和蛋白质传感。SHERLOCK和DETECTR等先进技术证明了CRISPR在即时诊断方面的潜力,可以实现快速、高灵敏度的检测。化学修饰、CRISPR-Chip技术以及Cas12a和Cas13a等酶系统的整合,提高了信号放大和检测效率。这些进步有望实现分散的实时诊断解决方案,对全球医疗保健产生重大影响。此外,CRISPR与人工智能和数字健康平台的融合为更容易获得、更具成本效益和可扩展的诊断方法铺平了道路,最终将彻底改变精准医疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioanalysis
Bioanalysis BIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
3.30
自引率
16.70%
发文量
88
审稿时长
2 months
期刊介绍: Reliable data obtained from selective, sensitive and reproducible analysis of xenobiotics and biotics in biological samples is a fundamental and crucial part of every successful drug development program. The same principles can also apply to many other areas of research such as forensic science, toxicology and sports doping testing. The bioanalytical field incorporates sophisticated techniques linking sample preparation and advanced separations with MS and NMR detection systems, automation and robotics. Standards set by regulatory bodies regarding method development and validation increasingly define the boundaries between speed and quality. Bioanalysis is a progressive discipline for which the future holds many exciting opportunities to further reduce sample volumes, analysis cost and environmental impact, as well as to improve sensitivity, specificity, accuracy, efficiency, assay throughput, data quality, data handling and processing. The journal Bioanalysis focuses on the techniques and methods used for the detection or quantitative study of analytes in human or animal biological samples. Bioanalysis encourages the submission of articles describing forward-looking applications, including biosensors, microfluidics, miniaturized analytical devices, and new hyphenated and multi-dimensional techniques. Bioanalysis delivers essential information in concise, at-a-glance article formats. Key advances in the field are reported and analyzed by international experts, providing an authoritative but accessible forum for the modern bioanalyst.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信