Efficacy and Cellular Mechanism of Biomimetic Marine Adhesive Protein-Based Coating Against Skin Photoaging.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Bo Xue
{"title":"Efficacy and Cellular Mechanism of Biomimetic Marine Adhesive Protein-Based Coating Against Skin Photoaging.","authors":"Bo Xue","doi":"10.1002/adhm.202402019","DOIUrl":null,"url":null,"abstract":"<p><p>Skin photoaging is a problem worldwide, clinically often accompanied by collagen decline, increased wrinkles, loss of skin elasticity, structurally weakened skin, and other complications, which urgently demand effective treatment strategies. The biosafety and efficacy of single-function therapies for repairing skin photoaging are still challenging for clinical medicine today. At present, numerous studies report that the wet adhesive proteins driven from marine organisms play a critical role in the biomedical material field, particularly in aquatic environments. In this study, a natural recombinant protein-based coating from scallop byssal protein is prepared to investigate the efficacy and cellular mechanism in accelerating the repair of UVB-induced photoaging in a mouse model. In vitro experiments demonstrate the safety of the coating and its efficacy in enhancing cell adhesion, spreading, proliferation, and migration. Additionally, the coating effectively scavenges reactive oxygen species, promotes the expression of cell adhesion molecules and anti-apoptotic proteins, and inhibits inflammatory responses. In animal tests, the coating exhibited remarkable adsorption properties, showing significant potential for in situ regenerative therapy, as evidenced by its ability to protect against UVB-induced skin photoaging and oxidative stress. These findings suggest that Sbp9<sup>Δ</sup> coating provides a simple, safe, and innovative strategy for treating skin photoaging.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402019"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402019","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Skin photoaging is a problem worldwide, clinically often accompanied by collagen decline, increased wrinkles, loss of skin elasticity, structurally weakened skin, and other complications, which urgently demand effective treatment strategies. The biosafety and efficacy of single-function therapies for repairing skin photoaging are still challenging for clinical medicine today. At present, numerous studies report that the wet adhesive proteins driven from marine organisms play a critical role in the biomedical material field, particularly in aquatic environments. In this study, a natural recombinant protein-based coating from scallop byssal protein is prepared to investigate the efficacy and cellular mechanism in accelerating the repair of UVB-induced photoaging in a mouse model. In vitro experiments demonstrate the safety of the coating and its efficacy in enhancing cell adhesion, spreading, proliferation, and migration. Additionally, the coating effectively scavenges reactive oxygen species, promotes the expression of cell adhesion molecules and anti-apoptotic proteins, and inhibits inflammatory responses. In animal tests, the coating exhibited remarkable adsorption properties, showing significant potential for in situ regenerative therapy, as evidenced by its ability to protect against UVB-induced skin photoaging and oxidative stress. These findings suggest that Sbp9Δ coating provides a simple, safe, and innovative strategy for treating skin photoaging.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信