Thermal evolution of solid solution of silica-embedded AgPt alloy NPs in the large miscibility gap.

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hemant Jatav, Anusmita Chakravorty, Ambuj Mishra, Matthias Schwartzkopf, Andrei Chumakov, Stephan V Roth, Debdulal Kabiraj
{"title":"Thermal evolution of solid solution of silica-embedded AgPt alloy NPs in the large miscibility gap.","authors":"Hemant Jatav, Anusmita Chakravorty, Ambuj Mishra, Matthias Schwartzkopf, Andrei Chumakov, Stephan V Roth, Debdulal Kabiraj","doi":"10.1039/d4nh00509k","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the phase behavior of immiscible elements in bimetallic nanomaterials is essential for controlling their structure and properties. At the nanoscale, the miscibility of these immiscible elements often deviates from their behavior in bulk materials. Despite its significance, comprehensive and quantitative experimental insights into the dynamics of the immiscible-to-miscible transition, and <i>vice versa</i>, remain limited. In this study, we investigate the nucleation and growth kinetics of silica-embedded AgPt nanoparticles (NPs) across a wide range of annealing temperatures (25 °C to 900 °C) to elucidate temperature-dependent nanoalloy phase transitions and NP size distribution. Our findings reveal that the alloy phase persists up to 400 °C, with a corresponding average NP size of ∼2 nm. Beyond this temperature, phase instability begins to occur. We propose a three-stage process of nucleation and growth: (1) initial AgPt nanoalloy formation during deposition, (2) growth <i>via</i> thermal energy-assisted diffusion up to 400 °C, and (3) Ag atom emission from the nanoalloy above 500 °C, indicating Ag diffusion towards the surface, followed by partial sublimation of Ag atoms at 900 °C. These results provide crucial insights into the thermal limits for the dealloying of NPs, growth kinetics, and phase stability or instability under varying thermal conditions.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00509k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the phase behavior of immiscible elements in bimetallic nanomaterials is essential for controlling their structure and properties. At the nanoscale, the miscibility of these immiscible elements often deviates from their behavior in bulk materials. Despite its significance, comprehensive and quantitative experimental insights into the dynamics of the immiscible-to-miscible transition, and vice versa, remain limited. In this study, we investigate the nucleation and growth kinetics of silica-embedded AgPt nanoparticles (NPs) across a wide range of annealing temperatures (25 °C to 900 °C) to elucidate temperature-dependent nanoalloy phase transitions and NP size distribution. Our findings reveal that the alloy phase persists up to 400 °C, with a corresponding average NP size of ∼2 nm. Beyond this temperature, phase instability begins to occur. We propose a three-stage process of nucleation and growth: (1) initial AgPt nanoalloy formation during deposition, (2) growth via thermal energy-assisted diffusion up to 400 °C, and (3) Ag atom emission from the nanoalloy above 500 °C, indicating Ag diffusion towards the surface, followed by partial sublimation of Ag atoms at 900 °C. These results provide crucial insights into the thermal limits for the dealloying of NPs, growth kinetics, and phase stability or instability under varying thermal conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信