Agnieszka Mierek-Adamska, Milena Kulasek, Grażyna B Dąbrowska, Claudia A Blindauer
{"title":"Type 4 plant metallothioneins - players in zinc biofortification?","authors":"Agnieszka Mierek-Adamska, Milena Kulasek, Grażyna B Dąbrowska, Claudia A Blindauer","doi":"10.1111/brv.13182","DOIUrl":null,"url":null,"abstract":"<p><p>Food security is defined as uninterrupted access to food that meets people's dietary needs. One essential trace element of a complete diet is zinc, which is vital for various processes, including growth, development, and the immune response. The estimated global prevalence of zinc deficiency is around 30%. Meat and meat products provide an abundant and also bioavailable source of zinc. However, in developing countries, access to meat is restricted, and in developed countries, meat consumption has declined for ethical and environmental reasons. The potential for zinc deficiency arises from (i) low concentrations of this element in plant-based diets, (ii) poor zinc absorption from plant-based food in the human intestine, and (iii) the risk of uptake of toxic metals together with essential ones. This review summarises the current knowledge concerning type 4 metallothioneins, which represent promising targets for zinc biofortification. We describe their place in the zinc route from soil to seed, their expression patterns, their role in plants, and their three-dimensional protein structure and how this affects their selectivity towards zinc. This review aims to provide a comprehensive theoretical basis for the potential use of type 4 plant metallothioneins to create zinc-biofortified crops.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.13182","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food security is defined as uninterrupted access to food that meets people's dietary needs. One essential trace element of a complete diet is zinc, which is vital for various processes, including growth, development, and the immune response. The estimated global prevalence of zinc deficiency is around 30%. Meat and meat products provide an abundant and also bioavailable source of zinc. However, in developing countries, access to meat is restricted, and in developed countries, meat consumption has declined for ethical and environmental reasons. The potential for zinc deficiency arises from (i) low concentrations of this element in plant-based diets, (ii) poor zinc absorption from plant-based food in the human intestine, and (iii) the risk of uptake of toxic metals together with essential ones. This review summarises the current knowledge concerning type 4 metallothioneins, which represent promising targets for zinc biofortification. We describe their place in the zinc route from soil to seed, their expression patterns, their role in plants, and their three-dimensional protein structure and how this affects their selectivity towards zinc. This review aims to provide a comprehensive theoretical basis for the potential use of type 4 plant metallothioneins to create zinc-biofortified crops.
期刊介绍:
Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly.
The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions.
The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field.
Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.