Powering the Future: Opportunities and Obstacles in Lead-Halide Inorganic Perovskite Solar Cells.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Narendra Pai, Dechan Angmo
{"title":"Powering the Future: Opportunities and Obstacles in Lead-Halide Inorganic Perovskite Solar Cells.","authors":"Narendra Pai, Dechan Angmo","doi":"10.1002/advs.202412666","DOIUrl":null,"url":null,"abstract":"<p><p>Efficiency, stability, and cost are crucial considerations in the development of photovoltaic technology for commercialization. Perovskite solar cells (PSCs) are a promising third-generation photovoltaic technology due to their high efficiency and low-cost potential. However, the stability of organohalide perovskites remains a significant challenge. Inorganic perovskites, based on CsPbX<sub>₃</sub> (X = Br<sup>-</sup>/I<sup>-</sup>), have garnered attention for their excellent thermal stability and optoelectronic properties comparable to those of organohalide perovskites. Nevertheless, the development of inorganic perovskites faces several hurdles, including the need for high-temperature annealing to achieve the photoactive α-phase and their susceptibility to transitioning into the nonphotoactive δ-phase under environmental stressors, particularly moisture. These challenges impede the creation of high-efficiency, high-stability devices using low-cost, scalable manufacturing processes. This review provides a comprehensive background on the fundamental structural, physical, and optoelectronic properties of inorganic lead-halide perovskites. It discusses the latest advancements in fabricating inorganic PSCs at lower temperatures and under ambient conditions. Furthermore, it highlights the progress in state-of-the-art inorganic devices, particularly those manufactured in ambient environments and at reduced temperatures, alongside simultaneous advancements in the upscaling and stability of inorganic PSCs.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412666"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412666","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiency, stability, and cost are crucial considerations in the development of photovoltaic technology for commercialization. Perovskite solar cells (PSCs) are a promising third-generation photovoltaic technology due to their high efficiency and low-cost potential. However, the stability of organohalide perovskites remains a significant challenge. Inorganic perovskites, based on CsPbX (X = Br-/I-), have garnered attention for their excellent thermal stability and optoelectronic properties comparable to those of organohalide perovskites. Nevertheless, the development of inorganic perovskites faces several hurdles, including the need for high-temperature annealing to achieve the photoactive α-phase and their susceptibility to transitioning into the nonphotoactive δ-phase under environmental stressors, particularly moisture. These challenges impede the creation of high-efficiency, high-stability devices using low-cost, scalable manufacturing processes. This review provides a comprehensive background on the fundamental structural, physical, and optoelectronic properties of inorganic lead-halide perovskites. It discusses the latest advancements in fabricating inorganic PSCs at lower temperatures and under ambient conditions. Furthermore, it highlights the progress in state-of-the-art inorganic devices, particularly those manufactured in ambient environments and at reduced temperatures, alongside simultaneous advancements in the upscaling and stability of inorganic PSCs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信