Ion-specific phenomena limit energy recovery in forward-biased bipolar membranes

Justin C. Bui, Eric W. Lees, Andrew K. Liu, Wei Lun Toh, T. Nathan Stovall, Priyamvada Goyal, Francisco Javier U. Galang, Yogesh Surendranath, Alexis T. Bell, Adam Z. Weber
{"title":"Ion-specific phenomena limit energy recovery in forward-biased bipolar membranes","authors":"Justin C. Bui, Eric W. Lees, Andrew K. Liu, Wei Lun Toh, T. Nathan Stovall, Priyamvada Goyal, Francisco Javier U. Galang, Yogesh Surendranath, Alexis T. Bell, Adam Z. Weber","doi":"10.1038/s44286-024-00154-x","DOIUrl":null,"url":null,"abstract":"The ability for bipolar membranes (BPMs) to interconvert voltage and pH makes them attractive materials for use in energy conversion and storage. Reverse-biased BPMs, which use electrical voltage to dissociate water into acid and base, have become increasingly well studied. However, forward-biased BPMs (FB-BPMs), in which voltage is extracted from pH gradients through recombination, require further study. Here physics-based modeling elucidates how the complex coupling of transport and kinetics dictates the performance of FB-BPMs in electrochemical devices. Simulations reveal that the open-circuit potential of FB-BPMs is dictated by the balance of ion recombination and crossover, where recombination of buffering counter-ions attenuates the open-circuit potential. Counter-ion mass-transport limitations and uptake of ionic impurities limit achievable current densities by reducing the applied pH gradient or the available fixed-charge sites that mediate recombination. The model highlights the importance of selective ion management in mitigating energy losses and provides insight into the rational material design of FB-BPMs for energy applications. Forward-biased bipolar membranes (FB-BPMs), which recover potential from pH gradients through ion–ion recombination, show promise for application in sustainable devices. The authors use physics-based modeling to elucidate how ion-specific phenomena dictate performance, reveal how selective ion management can mitigate energy losses and provide insights into the rational design of next-generation FB-BPMs.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 1","pages":"63-76"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00154-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00154-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The ability for bipolar membranes (BPMs) to interconvert voltage and pH makes them attractive materials for use in energy conversion and storage. Reverse-biased BPMs, which use electrical voltage to dissociate water into acid and base, have become increasingly well studied. However, forward-biased BPMs (FB-BPMs), in which voltage is extracted from pH gradients through recombination, require further study. Here physics-based modeling elucidates how the complex coupling of transport and kinetics dictates the performance of FB-BPMs in electrochemical devices. Simulations reveal that the open-circuit potential of FB-BPMs is dictated by the balance of ion recombination and crossover, where recombination of buffering counter-ions attenuates the open-circuit potential. Counter-ion mass-transport limitations and uptake of ionic impurities limit achievable current densities by reducing the applied pH gradient or the available fixed-charge sites that mediate recombination. The model highlights the importance of selective ion management in mitigating energy losses and provides insight into the rational material design of FB-BPMs for energy applications. Forward-biased bipolar membranes (FB-BPMs), which recover potential from pH gradients through ion–ion recombination, show promise for application in sustainable devices. The authors use physics-based modeling to elucidate how ion-specific phenomena dictate performance, reveal how selective ion management can mitigate energy losses and provide insights into the rational design of next-generation FB-BPMs.

Abstract Image

双极膜(BPM)能够相互转换电压和 pH 值,这使它们成为能源转换和储存领域极具吸引力的材料。反向偏压双极膜利用电压将水离解为酸和碱,对这种膜的研究越来越深入。然而,正向偏置 BPM(FB-BPM)则需要进一步研究,因为它通过重组从 pH 值梯度中提取电压。在此,基于物理学的建模阐明了传输和动力学的复杂耦合如何决定 FB-BPM 在电化学设备中的性能。模拟结果表明,FB-BPM 的开路电势受离子重组和交叉平衡的影响,其中缓冲反离子的重组会减弱开路电势。反离子的质量传输限制和离子杂质的吸收会降低应用的 pH 值梯度或介导重组的可用固定电荷位点,从而限制可实现的电流密度。该模型强调了选择性离子管理在减少能量损失方面的重要性,并为合理设计用于能源应用的 FB-BPM 材料提供了启示。正向偏置双极膜(FB-BPM)通过离子-离子重组从 pH 值梯度恢复电位,有望应用于可持续设备。作者利用基于物理学的建模阐明了离子特异性现象如何决定性能,揭示了选择性离子管理如何减轻能量损失,并为下一代 FB-BPM 的合理设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信