Unravelling groundwater–stream connections over the continental United States

Chen Yang, Laura E. Condon, Reed M. Maxwell
{"title":"Unravelling groundwater–stream connections over the continental United States","authors":"Chen Yang, Laura E. Condon, Reed M. Maxwell","doi":"10.1038/s44221-024-00366-8","DOIUrl":null,"url":null,"abstract":"Groundwater is a critical component of the terrestrial water cycle, yet the distance and depth of its connections with streamflow remain unquantified at large scale. Here we conducted a backward-particle-tracking simulation across the continental United States. We quantified the lateral length and vertical depth of groundwater flow discharged to streams as baseflow. Our simulation results suggest that water may travel longer distances underground before emerging in a stream than previously thought, and that deep groundwater sourced from consolidated sediments, aquifers typically 10–100 m below the ground surface, contribute more than half of the baseflow in 56% of the subbasins. Water-balance approaches may underestimate inter-basin groundwater flow due to concurrent groundwater exportation and importation of a watershed. Unexpectedly stronger connections of streamflow with deep and inter-basin groundwater flow paths found here have important implications for watershed resilience to climate change and persistence of contamination. Using a backward-particle-tracking simulation across the contiguous United States, this study quantifies the distance and depth of the groundwater entering a stream and highlights the strong connections between streamflow and deep and inter-basin groundwater flow paths.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 1","pages":"70-79"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00366-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00366-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater is a critical component of the terrestrial water cycle, yet the distance and depth of its connections with streamflow remain unquantified at large scale. Here we conducted a backward-particle-tracking simulation across the continental United States. We quantified the lateral length and vertical depth of groundwater flow discharged to streams as baseflow. Our simulation results suggest that water may travel longer distances underground before emerging in a stream than previously thought, and that deep groundwater sourced from consolidated sediments, aquifers typically 10–100 m below the ground surface, contribute more than half of the baseflow in 56% of the subbasins. Water-balance approaches may underestimate inter-basin groundwater flow due to concurrent groundwater exportation and importation of a watershed. Unexpectedly stronger connections of streamflow with deep and inter-basin groundwater flow paths found here have important implications for watershed resilience to climate change and persistence of contamination. Using a backward-particle-tracking simulation across the contiguous United States, this study quantifies the distance and depth of the groundwater entering a stream and highlights the strong connections between streamflow and deep and inter-basin groundwater flow paths.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信