Rational design of dual Chemo- and Thermo-responsive phase separation of Poly(4-hydroxystyrene) in non-aqueous media

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Kota Hashimoto, Natsuki Inaba, Keitaro Matsuoka, Kazuki Sada
{"title":"Rational design of dual Chemo- and Thermo-responsive phase separation of Poly(4-hydroxystyrene) in non-aqueous media","authors":"Kota Hashimoto, Natsuki Inaba, Keitaro Matsuoka, Kazuki Sada","doi":"10.1038/s41428-024-00968-9","DOIUrl":null,"url":null,"abstract":"Dual stimuli-responsiveness in non-aqueous media could allow various molecular designs using a system that is not compatible with aqueous media. However, the difficulty in controlling the desolvation of the polymer chains in non-aqueous media for lower critical solution temperature (LCST)-type phase separation at ambient temperature has hindered the attainment of dual stimuli-responsiveness based on chemical stimuli. In this study, we rationally designed dual chemo- and thermo-responsive phase separations of poly(4-hydroxystyrene) in non-aqueous media. The LCST-type thermo-responsiveness of poly(4-hydroxystyrene) in 1,4-dioxane/toluene was considerably altered by the addition of small amounts of hydrogen-bonding molecules as chemical stimuli. Secondary amines or molecules containing two hydrogen-bonding functional groups formed stronger hydrogen bonds with the polymer chains than 1,4-dioxane, which altered the solvation state and induced the UCST-type thermo-responsiveness or insolubility of PHS. This dual stimuli-responsive system could serve as a chemical sensor to detect the presence of acids. Dual chemo- and thermo-responsive phase separations of poly(4-hydroxystyrene) in non-aqueous media were demonstrated. The addition of small amounts of hydrogen-bonding molecules as chemical stimuli caused a considerable change of LCST-type thermo-responsiveness of poly(4-hydroxystyrene) in 1,4-dioxane/toluene. Secondary amines or molecules containing two hydrogen-bonding functional groups could cross-link the polymer chains through the hydrogen bonds, which altered the solvation state and induced the UCST-type thermo-responsiveness or insolubility of the polymer. This dual stimuli-responsive system worked as a chemical sensor to detect the presence of acids.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 2","pages":"181-188"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00968-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dual stimuli-responsiveness in non-aqueous media could allow various molecular designs using a system that is not compatible with aqueous media. However, the difficulty in controlling the desolvation of the polymer chains in non-aqueous media for lower critical solution temperature (LCST)-type phase separation at ambient temperature has hindered the attainment of dual stimuli-responsiveness based on chemical stimuli. In this study, we rationally designed dual chemo- and thermo-responsive phase separations of poly(4-hydroxystyrene) in non-aqueous media. The LCST-type thermo-responsiveness of poly(4-hydroxystyrene) in 1,4-dioxane/toluene was considerably altered by the addition of small amounts of hydrogen-bonding molecules as chemical stimuli. Secondary amines or molecules containing two hydrogen-bonding functional groups formed stronger hydrogen bonds with the polymer chains than 1,4-dioxane, which altered the solvation state and induced the UCST-type thermo-responsiveness or insolubility of PHS. This dual stimuli-responsive system could serve as a chemical sensor to detect the presence of acids. Dual chemo- and thermo-responsive phase separations of poly(4-hydroxystyrene) in non-aqueous media were demonstrated. The addition of small amounts of hydrogen-bonding molecules as chemical stimuli caused a considerable change of LCST-type thermo-responsiveness of poly(4-hydroxystyrene) in 1,4-dioxane/toluene. Secondary amines or molecules containing two hydrogen-bonding functional groups could cross-link the polymer chains through the hydrogen bonds, which altered the solvation state and induced the UCST-type thermo-responsiveness or insolubility of the polymer. This dual stimuli-responsive system worked as a chemical sensor to detect the presence of acids.

Abstract Image

非水介质中聚(4-羟基苯乙烯)化学和热响应双相分离的合理设计
非水介质中的双重刺激响应性可以允许使用与水介质不兼容的系统进行各种分子设计。然而,在环境温度下,低临界溶液温度(LCST)型相分离在非水介质中难以控制聚合物链的脱溶,阻碍了基于化学刺激的双刺激-响应性的实现。在本研究中,我们合理设计了非水介质中聚(4-羟基苯乙烯)的化学和热响应双相分离。在1,4-二氧六环/甲苯中加入少量氢键分子作为化学刺激,显著改变了聚(4-羟基苯乙烯)的lcst型热响应性。含有两个氢键官能团的仲胺或分子与聚合物链形成比1,4-二恶烷更强的氢键,改变了溶剂化状态,诱导小PHS具有ucst型热响应性或不溶性。这种双刺激反应系统可以作为化学传感器来检测酸的存在。研究了聚(4-羟基苯乙烯)在非水介质中的双化学和热响应相分离。少量氢键分子的加入作为化学刺激,使得聚(4-羟基苯乙烯)在1,4-二氧六环/甲苯中lcst型热响应性发生了较大的变化。含两个氢键官能团的仲胺或分子可以通过氢键与聚合物链交联,改变聚合物的溶剂化状态,引起聚合物的ucst型热响应性或不溶性。这种双重刺激反应系统作为化学传感器来检测酸的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信