Global evidence of human well-being and biodiversity impacts of natural climate solutions

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Charlotte H. Chang, James T. Erbaugh, Paola Fajardo, Luci Lu, István Molnár, Dávid Papp, Brian E. Robinson, Kemen G. Austin, Miguel Castro, Samantha H. Cheng, Susan Cook-Patton, Peter W. Ellis, Teevrat Garg, Jacob P. Hochard, Timm Kroeger, Robert I. McDonald, Erin E. Poor, Lindsey S. Smart, Andrew R. Tilman, Preston Welker, Stephen A. Wood, Yuta J. Masuda
{"title":"Global evidence of human well-being and biodiversity impacts of natural climate solutions","authors":"Charlotte H. Chang, James T. Erbaugh, Paola Fajardo, Luci Lu, István Molnár, Dávid Papp, Brian E. Robinson, Kemen G. Austin, Miguel Castro, Samantha H. Cheng, Susan Cook-Patton, Peter W. Ellis, Teevrat Garg, Jacob P. Hochard, Timm Kroeger, Robert I. McDonald, Erin E. Poor, Lindsey S. Smart, Andrew R. Tilman, Preston Welker, Stephen A. Wood, Yuta J. Masuda","doi":"10.1038/s41893-024-01454-z","DOIUrl":null,"url":null,"abstract":"Natural climate solutions (NCS) play a critical role in climate change mitigation. NCS can generate win–win co-benefits for biodiversity and human well-being, but they can also involve trade-offs (co-impacts). However, the massive evidence base on NCS co-benefits and possible trade-offs is poorly understood. We employ large language models to assess over 2 million published journal articles, primarily written in English, finding 257,266 relevant studies on NCS co-impacts. Using machine learning methods to extract data (for example, study location, species and other key variables), we create a global evidence map on NCS co-impacts. We find that global evidence on NCS co-impacts has grown approximately tenfold in three decades, and some of the most abundant evidence relates to NCS that have lower mitigation potential. Studies often examine multiple NCS, indicating some natural complementarities. Finally, we identify countries with high carbon mitigation potential but a relatively weak body of evidence on NCS co-impacts. Through effective methods and systematic and representative data on NCS co-impacts, we provide timely insights to inform NCS-related research and action globally. Rich evidence of the potential co-benefits and trade-offs of natural climate solutions is available but remains poorly understood. Assessing the literature with machine learning methods, this study maps and analyses the growing evidence of trade-offs in natural climate solutions globally.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 1","pages":"75-85"},"PeriodicalIF":25.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01454-z","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural climate solutions (NCS) play a critical role in climate change mitigation. NCS can generate win–win co-benefits for biodiversity and human well-being, but they can also involve trade-offs (co-impacts). However, the massive evidence base on NCS co-benefits and possible trade-offs is poorly understood. We employ large language models to assess over 2 million published journal articles, primarily written in English, finding 257,266 relevant studies on NCS co-impacts. Using machine learning methods to extract data (for example, study location, species and other key variables), we create a global evidence map on NCS co-impacts. We find that global evidence on NCS co-impacts has grown approximately tenfold in three decades, and some of the most abundant evidence relates to NCS that have lower mitigation potential. Studies often examine multiple NCS, indicating some natural complementarities. Finally, we identify countries with high carbon mitigation potential but a relatively weak body of evidence on NCS co-impacts. Through effective methods and systematic and representative data on NCS co-impacts, we provide timely insights to inform NCS-related research and action globally. Rich evidence of the potential co-benefits and trade-offs of natural climate solutions is available but remains poorly understood. Assessing the literature with machine learning methods, this study maps and analyses the growing evidence of trade-offs in natural climate solutions globally.

Abstract Image

自然气候解决方案(NCS)在减缓气候变化方面发挥着至关重要的作用。自然气候解决方案可为生物多样性和人类福祉带来双赢的共同利益,但也可能涉及权衡(共同影响)。然而,人们对有关非碳氢化合物共同效益和可能的权衡的大量证据却知之甚少。我们采用大型语言模型评估了 200 多万篇已发表的期刊文章(主要以英文撰写),发现了 257,266 篇关于非碳氢化合物共同影响的相关研究。利用机器学习方法提取数据(例如研究地点、物种和其他关键变量),我们绘制了非碳氢化合物共同影响的全球证据图。我们发现,在三十年间,全球有关非核心 文化遗产共同影响的证据增长了约十倍,其中一些最丰富的证据与减缓潜力较低的非核心 文化遗产有关。研究通常会对多种非碳氢化合物进行考察,这表明存在一些自然互补性。最后,我们发现一些国家具有较高的碳减排潜力,但有关非碳氢化合物共同影响的证据却相对薄弱。通过有效的方法和系统的、有代表性的非碳捕获物共同影响数据,我们为全球非碳捕获物相关研究和行动提供了及时的启示。关于自然气候解决方案的潜在共同效益和权衡的证据非常丰富,但人们对这些证据的了解仍然很少。本研究利用机器学习方法对文献进行评估,绘制并分析了全球范围内自然气候解决方案权衡的越来越多的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信