Design and Analysis of a 3D Frictional Mechanical Metamaterial for Efficient Energy Dissipation

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Eunhyeuk Jeong, Emilio Calius, Maziar Ramezani
{"title":"Design and Analysis of a 3D Frictional Mechanical Metamaterial for Efficient Energy Dissipation","authors":"Eunhyeuk Jeong,&nbsp;Emilio Calius,&nbsp;Maziar Ramezani","doi":"10.1002/admt.202400614","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a novel frictional mechanical metamaterial composed of a central hexagon or re-entrant honeycomb frame, a lower section with four tapered columns, and an upper portion with a blade shape. When subjected to an external uniaxial force, the 3D structure of the metamaterial utilizes sliding interactions to dissipate frictional energy. The mechanical properties of the proposed metamaterial, such as load-displacement relationships, hysteresis area, and peak force, can be fine-tuned by adjusting geometric parameters and constituent materials. Extensive analysis is conducted through experimental compression tests, finite element (FE) simulations, and theoretical modeling. Comparative assessments of the metamaterial's energy dissipation performance demonstrated a good agreement between experimental and simulation results, with minor variations observed for deeper compression cycles. The proposed metamaterial offers the potential for superior elastic energy absorption and dissipation, making it a promising solution for applications requiring repeated energy dissipation or damping under cyclical loads while maintaining a lightweight profile.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 2","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400614","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel frictional mechanical metamaterial composed of a central hexagon or re-entrant honeycomb frame, a lower section with four tapered columns, and an upper portion with a blade shape. When subjected to an external uniaxial force, the 3D structure of the metamaterial utilizes sliding interactions to dissipate frictional energy. The mechanical properties of the proposed metamaterial, such as load-displacement relationships, hysteresis area, and peak force, can be fine-tuned by adjusting geometric parameters and constituent materials. Extensive analysis is conducted through experimental compression tests, finite element (FE) simulations, and theoretical modeling. Comparative assessments of the metamaterial's energy dissipation performance demonstrated a good agreement between experimental and simulation results, with minor variations observed for deeper compression cycles. The proposed metamaterial offers the potential for superior elastic energy absorption and dissipation, making it a promising solution for applications requiring repeated energy dissipation or damping under cyclical loads while maintaining a lightweight profile.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信