Long Short-Term Memory Wavelet Neural Network for Renewable Energy Generation Forecasting

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Eliana Vivas, Héctor Allende-Cid, Lelys Bravo de Guenni, Aurelio F. Bariviera, Rodrigo Salas
{"title":"Long Short-Term Memory Wavelet Neural Network for Renewable Energy Generation Forecasting","authors":"Eliana Vivas,&nbsp;Héctor Allende-Cid,&nbsp;Lelys Bravo de Guenni,&nbsp;Aurelio F. Bariviera,&nbsp;Rodrigo Salas","doi":"10.1155/int/8890906","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Renewable energy forecasting is crucial for pollution prevention, management, and long-term sustainability. In response to the challenges associated with energy forecasting, the simultaneous deployment of several data-processing approaches has been used in a variety of studies in order to improve the energy–time-series analysis, finding that, when combined with the wavelet analysis, deep learning techniques can achieve high accuracy in energy forecasting applications. Consequently, we investigate the implementation of various wavelets within the structure of a long short-term memory neural network (LSTM), resulting in the new LSTM wavelet (LSTMW) neural network. In addition, and as an improvement phase, we modeled the uncertainty and incorporated it into the forecast so that systemic biases and deviations could be accounted for (LSTMW with luster: LSTMWL). The models were evaluated using data from six renewable power generation plants in Chile. When compared to other approaches, experimental results show that our method provides a prediction error within an acceptable range, achieving a coefficient of determination (<i>R</i><sup>2</sup>) between 0.73 and 0.98 across different test scenarios, and a consistent alignment between forecasted and observed values, particularly during the first 3 prediction steps.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/8890906","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/8890906","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Renewable energy forecasting is crucial for pollution prevention, management, and long-term sustainability. In response to the challenges associated with energy forecasting, the simultaneous deployment of several data-processing approaches has been used in a variety of studies in order to improve the energy–time-series analysis, finding that, when combined with the wavelet analysis, deep learning techniques can achieve high accuracy in energy forecasting applications. Consequently, we investigate the implementation of various wavelets within the structure of a long short-term memory neural network (LSTM), resulting in the new LSTM wavelet (LSTMW) neural network. In addition, and as an improvement phase, we modeled the uncertainty and incorporated it into the forecast so that systemic biases and deviations could be accounted for (LSTMW with luster: LSTMWL). The models were evaluated using data from six renewable power generation plants in Chile. When compared to other approaches, experimental results show that our method provides a prediction error within an acceptable range, achieving a coefficient of determination (R2) between 0.73 and 0.98 across different test scenarios, and a consistent alignment between forecasted and observed values, particularly during the first 3 prediction steps.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信