Exploring Synergies: Greenhouse Gas Dynamics, Soil Mechanisms, and Forest Ecosystems for Climate Resilience and Sustainable Environmental Stewardship

IF 5.9 3区 工程技术 Q1 AGRONOMY
Ihsan Muhammad, Xinyu Luo, Imran Khan, Abdullah Ahmed Al-Ghamdi, Mohamed Soliman Elshikh, Weijun Shen
{"title":"Exploring Synergies: Greenhouse Gas Dynamics, Soil Mechanisms, and Forest Ecosystems for Climate Resilience and Sustainable Environmental Stewardship","authors":"Ihsan Muhammad,&nbsp;Xinyu Luo,&nbsp;Imran Khan,&nbsp;Abdullah Ahmed Al-Ghamdi,&nbsp;Mohamed Soliman Elshikh,&nbsp;Weijun Shen","doi":"10.1111/gcbb.70016","DOIUrl":null,"url":null,"abstract":"<p>Rising global temperatures underscore the urgent need to understand the complex interplay between greenhouse gas (GHG) emissions and climate change. This study investigates the relationships between GHG emissions and key environmental factors in China from 1990 to 2019, focusing on the role of forest ecosystems and soil management practices. Utilizing FAOSTAT and World Development Indicators data, we analyze the connections between total GHG emissions and factors such as biomass burning (BM), net stock change (NSC), fertilizer application (FERT), and manure application (MA) in soils. Employing impulse response analysis and Robust Least Squares Estimation with transformed logarithmic independent parameters, we find strong positive correlations between GHG emissions and both BM (coefficient 0.82) and FERT (coefficient 0.95). Robust Least Squares Estimation further confirms the significant influence of BM (coefficient 0.85) and FERT (coefficient 1.01) on GHG emissions. Notably, the interaction between precipitation (PPT) and NSC significantly impacts GHG emissions, with a negative coefficient (−0.58) for “PPT * NSC”. In contrast, the interaction between PPT and FERT significantly impacts GHG emissions, with a positive coefficient (0.29) for “PPT * FERT.” Furthermore, a unidirectional causality is observed from GHGs to BM (coefficient 6.31). These findings highlight the critical roles of BM, fertilizer use, and PPT patterns in driving GHG dynamics and underscore the potential of forest management strategies, particularly those focused on NSC, to mitigate climate change. This research provides valuable insights for promoting a sustainable balance between human activities and the vital role of forests in maintaining a healthy environment.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70016","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Rising global temperatures underscore the urgent need to understand the complex interplay between greenhouse gas (GHG) emissions and climate change. This study investigates the relationships between GHG emissions and key environmental factors in China from 1990 to 2019, focusing on the role of forest ecosystems and soil management practices. Utilizing FAOSTAT and World Development Indicators data, we analyze the connections between total GHG emissions and factors such as biomass burning (BM), net stock change (NSC), fertilizer application (FERT), and manure application (MA) in soils. Employing impulse response analysis and Robust Least Squares Estimation with transformed logarithmic independent parameters, we find strong positive correlations between GHG emissions and both BM (coefficient 0.82) and FERT (coefficient 0.95). Robust Least Squares Estimation further confirms the significant influence of BM (coefficient 0.85) and FERT (coefficient 1.01) on GHG emissions. Notably, the interaction between precipitation (PPT) and NSC significantly impacts GHG emissions, with a negative coefficient (−0.58) for “PPT * NSC”. In contrast, the interaction between PPT and FERT significantly impacts GHG emissions, with a positive coefficient (0.29) for “PPT * FERT.” Furthermore, a unidirectional causality is observed from GHGs to BM (coefficient 6.31). These findings highlight the critical roles of BM, fertilizer use, and PPT patterns in driving GHG dynamics and underscore the potential of forest management strategies, particularly those focused on NSC, to mitigate climate change. This research provides valuable insights for promoting a sustainable balance between human activities and the vital role of forests in maintaining a healthy environment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信