Ihsan Muhammad, Xinyu Luo, Imran Khan, Abdullah Ahmed Al-Ghamdi, Mohamed Soliman Elshikh, Weijun Shen
{"title":"Exploring Synergies: Greenhouse Gas Dynamics, Soil Mechanisms, and Forest Ecosystems for Climate Resilience and Sustainable Environmental Stewardship","authors":"Ihsan Muhammad, Xinyu Luo, Imran Khan, Abdullah Ahmed Al-Ghamdi, Mohamed Soliman Elshikh, Weijun Shen","doi":"10.1111/gcbb.70016","DOIUrl":null,"url":null,"abstract":"<p>Rising global temperatures underscore the urgent need to understand the complex interplay between greenhouse gas (GHG) emissions and climate change. This study investigates the relationships between GHG emissions and key environmental factors in China from 1990 to 2019, focusing on the role of forest ecosystems and soil management practices. Utilizing FAOSTAT and World Development Indicators data, we analyze the connections between total GHG emissions and factors such as biomass burning (BM), net stock change (NSC), fertilizer application (FERT), and manure application (MA) in soils. Employing impulse response analysis and Robust Least Squares Estimation with transformed logarithmic independent parameters, we find strong positive correlations between GHG emissions and both BM (coefficient 0.82) and FERT (coefficient 0.95). Robust Least Squares Estimation further confirms the significant influence of BM (coefficient 0.85) and FERT (coefficient 1.01) on GHG emissions. Notably, the interaction between precipitation (PPT) and NSC significantly impacts GHG emissions, with a negative coefficient (−0.58) for “PPT * NSC”. In contrast, the interaction between PPT and FERT significantly impacts GHG emissions, with a positive coefficient (0.29) for “PPT * FERT.” Furthermore, a unidirectional causality is observed from GHGs to BM (coefficient 6.31). These findings highlight the critical roles of BM, fertilizer use, and PPT patterns in driving GHG dynamics and underscore the potential of forest management strategies, particularly those focused on NSC, to mitigate climate change. This research provides valuable insights for promoting a sustainable balance between human activities and the vital role of forests in maintaining a healthy environment.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 2","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70016","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Rising global temperatures underscore the urgent need to understand the complex interplay between greenhouse gas (GHG) emissions and climate change. This study investigates the relationships between GHG emissions and key environmental factors in China from 1990 to 2019, focusing on the role of forest ecosystems and soil management practices. Utilizing FAOSTAT and World Development Indicators data, we analyze the connections between total GHG emissions and factors such as biomass burning (BM), net stock change (NSC), fertilizer application (FERT), and manure application (MA) in soils. Employing impulse response analysis and Robust Least Squares Estimation with transformed logarithmic independent parameters, we find strong positive correlations between GHG emissions and both BM (coefficient 0.82) and FERT (coefficient 0.95). Robust Least Squares Estimation further confirms the significant influence of BM (coefficient 0.85) and FERT (coefficient 1.01) on GHG emissions. Notably, the interaction between precipitation (PPT) and NSC significantly impacts GHG emissions, with a negative coefficient (−0.58) for “PPT * NSC”. In contrast, the interaction between PPT and FERT significantly impacts GHG emissions, with a positive coefficient (0.29) for “PPT * FERT.” Furthermore, a unidirectional causality is observed from GHGs to BM (coefficient 6.31). These findings highlight the critical roles of BM, fertilizer use, and PPT patterns in driving GHG dynamics and underscore the potential of forest management strategies, particularly those focused on NSC, to mitigate climate change. This research provides valuable insights for promoting a sustainable balance between human activities and the vital role of forests in maintaining a healthy environment.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.