Improving the Generalization and Robustness of Computer-Generated Image Detection Based on Contrastive Learning

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yifang Chen, Weiwu Yin, Anwei Luo, Jianhua Yang, Jie Wang
{"title":"Improving the Generalization and Robustness of Computer-Generated Image Detection Based on Contrastive Learning","authors":"Yifang Chen,&nbsp;Weiwu Yin,&nbsp;Anwei Luo,&nbsp;Jianhua Yang,&nbsp;Jie Wang","doi":"10.1155/int/9939096","DOIUrl":null,"url":null,"abstract":"<div>\n <p>With the rapid development of image generation techniques, it becomes much more difficult to distinguish high-quality computer-generated (CG) images from photographic (PG) images, challenging the authenticity and credibility of digital images. Therefore, distinguishing CG images from PG images has become an important research problem in image forensics, and it is crucial to develop reliable methods to detect CG images in practical scenarios. In this paper, we proposed a forensics contrastive learning (FCL) framework to adaptively learn intrinsic forensics features for the general and robust detection of CG images. The data augmentation module is specially designed for CG image forensics, which reduces the interference of forensic-irrelevant information and enhances discrimination features between CG and PG images in both the spatial and frequency domains. Instance-wise contrastive loss and patch-wise contrastive loss are simultaneously applied to capture critical discrepancies between CG and PG images from global and local views. Extensive experiments on different public datasets and common postprocessing operations demonstrate that our approach can achieve significantly better generalization and robustness than the state-of-the-art approaches. This manuscript was submitted as a pre-print in the following link https://papers.ssrn.com/-sol3/papers.cfm?abstract_id=4778441.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/9939096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/9939096","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of image generation techniques, it becomes much more difficult to distinguish high-quality computer-generated (CG) images from photographic (PG) images, challenging the authenticity and credibility of digital images. Therefore, distinguishing CG images from PG images has become an important research problem in image forensics, and it is crucial to develop reliable methods to detect CG images in practical scenarios. In this paper, we proposed a forensics contrastive learning (FCL) framework to adaptively learn intrinsic forensics features for the general and robust detection of CG images. The data augmentation module is specially designed for CG image forensics, which reduces the interference of forensic-irrelevant information and enhances discrimination features between CG and PG images in both the spatial and frequency domains. Instance-wise contrastive loss and patch-wise contrastive loss are simultaneously applied to capture critical discrepancies between CG and PG images from global and local views. Extensive experiments on different public datasets and common postprocessing operations demonstrate that our approach can achieve significantly better generalization and robustness than the state-of-the-art approaches. This manuscript was submitted as a pre-print in the following link https://papers.ssrn.com/-sol3/papers.cfm?abstract_id=4778441.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信