A Noninvasive Method of Monitoring Blood Glucose Levels by Using Triple-Band Monopole Antenna

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Faten Sharaf, Dalia N. Elsheakh, Angie R. Eldamak
{"title":"A Noninvasive Method of Monitoring Blood Glucose Levels by Using Triple-Band Monopole Antenna","authors":"Faten Sharaf,&nbsp;Dalia N. Elsheakh,&nbsp;Angie R. Eldamak","doi":"10.1002/mop.70065","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper aims to present a novel methodology for noninvasive blood glucose monitoring. This method is based on monitoring the reflection coefficient of the proposed antenna-based sensor at three different bands simultaneously. This includes recording changes in the resonant frequency, magnitude, and phase. The above-mentioned parameters vary according to changes in blood conductivity and permittivity and consequently to blood glucose levels. A commercial FR4 substrate with compact dimensions of 30 × 40 × 1.6 mm<sup>3</sup> is used to construct the proposed antenna, and all the simulations are conducted using 3D electromagnetic software. The proposed monopole is circular-shaped with an etched split ring resonator (SRR) to create multiband resonant frequencies. The proposed antenna measured the concentration of glucose level by using multiband resonant frequencies at 2.9, 4.3, and 6.5 GHz. The impedance bandwidth ≤ −10 dB is 1.038, 1.4, 2.02 GHz, respectively at each resonant frequency. To validate the operation of the proposed sensor, a container filled with samples representing different glucose concentrations is placed above the proposed sensor. To measure the blood glucose levels, a human finger phantom model is used with dimensions 15 × 12 × 10 mm<sup>3</sup> in simulations. Moreover, glucose levels for four volunteers are compared in this paper before and after fasting using proposed sensors and a commercial glucometer. The proposed reflection-based microwave glucose sensing method exhibits an impressive sensitivity of 19.43 MHz/mg/dL.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70065","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to present a novel methodology for noninvasive blood glucose monitoring. This method is based on monitoring the reflection coefficient of the proposed antenna-based sensor at three different bands simultaneously. This includes recording changes in the resonant frequency, magnitude, and phase. The above-mentioned parameters vary according to changes in blood conductivity and permittivity and consequently to blood glucose levels. A commercial FR4 substrate with compact dimensions of 30 × 40 × 1.6 mm3 is used to construct the proposed antenna, and all the simulations are conducted using 3D electromagnetic software. The proposed monopole is circular-shaped with an etched split ring resonator (SRR) to create multiband resonant frequencies. The proposed antenna measured the concentration of glucose level by using multiband resonant frequencies at 2.9, 4.3, and 6.5 GHz. The impedance bandwidth ≤ −10 dB is 1.038, 1.4, 2.02 GHz, respectively at each resonant frequency. To validate the operation of the proposed sensor, a container filled with samples representing different glucose concentrations is placed above the proposed sensor. To measure the blood glucose levels, a human finger phantom model is used with dimensions 15 × 12 × 10 mm3 in simulations. Moreover, glucose levels for four volunteers are compared in this paper before and after fasting using proposed sensors and a commercial glucometer. The proposed reflection-based microwave glucose sensing method exhibits an impressive sensitivity of 19.43 MHz/mg/dL.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信