Auto-Bäcklund Transformations for New Matrix First and Second Painlevé Hierarchies

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Pilar Ruiz Gordoa, Andrew Pickering
{"title":"Auto-Bäcklund Transformations for New Matrix First and Second Painlevé Hierarchies","authors":"Pilar Ruiz Gordoa,&nbsp;Andrew Pickering","doi":"10.1111/sapm.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We define a new doubly extended matrix second Painlevé hierarchy, and in addition a new extended matrix first Painlevé hierarchy. For the former, we present three auto-Bäcklund transformations (auto-BTs) that constitute nontrivial extensions to our new hierarchy of previously derived results on the auto-BTs of a much simpler matrix second Painlevé hierarchy; for the latter, we define an auto-BT analagous to the third of these matrix second Painlevé auto-BTs. In addition, for both of our new hierarchies, we define a new class of auto-BT. In the scalar reduction, these then give rise to a new Bäcklund process for the second Painlevé equation, as well as to a similar Bäcklund process for the first Painlevé equation. These new Bäcklund processes provide mappings of arbitrary constants appearing in solutions.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70002","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We define a new doubly extended matrix second Painlevé hierarchy, and in addition a new extended matrix first Painlevé hierarchy. For the former, we present three auto-Bäcklund transformations (auto-BTs) that constitute nontrivial extensions to our new hierarchy of previously derived results on the auto-BTs of a much simpler matrix second Painlevé hierarchy; for the latter, we define an auto-BT analagous to the third of these matrix second Painlevé auto-BTs. In addition, for both of our new hierarchies, we define a new class of auto-BT. In the scalar reduction, these then give rise to a new Bäcklund process for the second Painlevé equation, as well as to a similar Bäcklund process for the first Painlevé equation. These new Bäcklund processes provide mappings of arbitrary constants appearing in solutions.

Auto-Bäcklund新矩阵第一和第二疼痛层次的变换
我们定义了一个新的双扩展矩阵二阶painlev层次,另外还定义了一个新的扩展矩阵二阶painlev层次。对于前者,我们提出了三个auto-Bäcklund变换(auto- bt),它们构成了我们的新层次的非平凡扩展,该层次是先前在更简单的矩阵第二painlevevl层次的auto- bt上导出的结果;对于后者,我们定义了一个类似于这些矩阵中的第三个的自动bt。此外,对于这两个新的层次结构,我们定义了一个新的auto-BT类。在标量约简中,这些会产生第二个painlev方程的新Bäcklund过程,以及第一个painlev方程的类似Bäcklund过程。这些新的Bäcklund过程提供了出现在解中的任意常数的映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信