Solving a Singular Limit Problem Arising With Euler–Korteweg Dispersive Waves

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Quentin Didierlaurent, Nicolas Favrie, Bruno Lombard
{"title":"Solving a Singular Limit Problem Arising With Euler–Korteweg Dispersive Waves","authors":"Quentin Didierlaurent,&nbsp;Nicolas Favrie,&nbsp;Bruno Lombard","doi":"10.1111/sapm.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Phase transition in compressible flows involves capillarity effects, described by the Euler–Korteweg (EK) equations with nonconvex equation of state. Far from phase transition, that is, in the two convex parts of the equation of state, the dispersion terms vanish and one should recover the hyperbolic Euler equations of fluid dynamics. However, the solution of EK equations does not converge toward the solution of Euler equations when dispersion tends toward zero while being nonnull: it is a singular limit problem. To avoid this issue in the case of convex equation of state, a Navier–Stokes–Korteweg (NSK) model is considered, whose viscosity is chosen to counterbalance exactly the dispersive terms. In the limit of small viscosity and small dispersion, the Euler model is recovered. Numerically, an extended Lagrangian method is used to integrate the NSK equations so obtained. Doing so allows to use classical numerical schemes of Godunov type with source term. Numerical results for a Riemann problem illustrate the convergence properties with vanishing dispersion.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Phase transition in compressible flows involves capillarity effects, described by the Euler–Korteweg (EK) equations with nonconvex equation of state. Far from phase transition, that is, in the two convex parts of the equation of state, the dispersion terms vanish and one should recover the hyperbolic Euler equations of fluid dynamics. However, the solution of EK equations does not converge toward the solution of Euler equations when dispersion tends toward zero while being nonnull: it is a singular limit problem. To avoid this issue in the case of convex equation of state, a Navier–Stokes–Korteweg (NSK) model is considered, whose viscosity is chosen to counterbalance exactly the dispersive terms. In the limit of small viscosity and small dispersion, the Euler model is recovered. Numerically, an extended Lagrangian method is used to integrate the NSK equations so obtained. Doing so allows to use classical numerical schemes of Godunov type with source term. Numerical results for a Riemann problem illustrate the convergence properties with vanishing dispersion.

求解Euler-Korteweg色散波的奇异极限问题
可压缩流动中的相变涉及毛细效应,用Euler-Korteweg (EK)方程和非凸状态方程来描述。远离相变,即在状态方程的两个凸部分,色散项消失,人们应该恢复流体力学的双曲欧拉方程。然而,当色散趋于零而非零时,EK方程的解并不收敛于欧拉方程的解,它是一个奇异极限问题。为了避免在凸状态方程情况下的这一问题,考虑了一种Navier-Stokes-Korteweg (NSK)模型,该模型选择粘度来精确地抵消色散项。在小粘度和小分散的极限下,恢复了欧拉模型。数值上,采用扩展拉格朗日方法对得到的NSK方程进行积分。这样就可以使用带源项的经典Godunov型数值格式。一个Riemann问题的数值结果说明了在色散消失时的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信