{"title":"Candidate bus identification for voltage stability enhancement of wind-penetrated power system based on spectral learning technique","authors":"Niancheng Zhou, Jinsheng Guo, Yuan Chi, Xinying Zheng, Qianggang Wang, Yongjie Luo, Jia Ye","doi":"10.1049/gtd2.13351","DOIUrl":null,"url":null,"abstract":"<p>Dynamic reactive power sources can efficiently address the voltage stability problem of a wind-penetrated power system and the possibility of cascading failures, which are caused by the decreasing inertia and the increasing complexity of the system dynamics. However, their applications are limited by the high investment cost. Identifying appropriate buses for the deployment can improve the economy and efficiency of reactive power source configuration and reduce the complexity of deployment models. Here, a new metric is proposed to guide the selection of candidate buses, based on the improved spectral learning technique and the quantitative assessment of the short-term voltage stability. Specifically, a new short-term voltage stability metric is developed to assess the dynamic voltage responses of different stages after a contingency. Then, an improved spectral learning algorithm with objective priorities assigned to different buses is used for the bus selection, aiming to identify the most influential buses, in terms of short-term voltage stability and propagation potentials. A two-dimensional decision-making methodology is proposed, considering both the capacity sensitivity and the bus's structural characteristics. The effectiveness of the proposed methodology is validated on a New England 39-bus system using an electromechanical transient model.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13351","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13351","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic reactive power sources can efficiently address the voltage stability problem of a wind-penetrated power system and the possibility of cascading failures, which are caused by the decreasing inertia and the increasing complexity of the system dynamics. However, their applications are limited by the high investment cost. Identifying appropriate buses for the deployment can improve the economy and efficiency of reactive power source configuration and reduce the complexity of deployment models. Here, a new metric is proposed to guide the selection of candidate buses, based on the improved spectral learning technique and the quantitative assessment of the short-term voltage stability. Specifically, a new short-term voltage stability metric is developed to assess the dynamic voltage responses of different stages after a contingency. Then, an improved spectral learning algorithm with objective priorities assigned to different buses is used for the bus selection, aiming to identify the most influential buses, in terms of short-term voltage stability and propagation potentials. A two-dimensional decision-making methodology is proposed, considering both the capacity sensitivity and the bus's structural characteristics. The effectiveness of the proposed methodology is validated on a New England 39-bus system using an electromechanical transient model.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf