{"title":"Crop rotations and canola yields: Evidence from field-level data in Western Canada","authors":"Feryel Lassoued, Peter Slade, Ashly Dyck","doi":"10.1002/agj2.21739","DOIUrl":null,"url":null,"abstract":"<p>Canola (<i>Brassica napus</i>) acreage increased in Western Canada in recent years, leading to rotations with fewer break years between canola plantings. Field trials suggest that frequent plantings of canola reduce canola yields. However, there is considerable disagreement about the magnitude and persistence of these effects. We analyze the effect of rotational practices on canola yields in Saskatchewan using over 20 years of observational data, representing 61% of canola hectares in the province. We examine how the impact of rotations varies across time, soil zone, soil moisture conditions and the distribution of yields. We regress canola yields in Saskatchewan on the share of land that was planted with particular crops in previous years, using a battery of covariates and fixed effects to address potential bias in the model. After including these fixed effects, we cannot reject the hypothesis that there is no sample selection bias. We use an unconditional quantile estimator to investigate how rotations affect different deciles of the yield distribution. Our analysis confirms that crop rotations significantly influence canola yields, albeit more modest than field trials suggest. We find a 7.5% yield reduction when canola follows canola, compared to cereals, with this penalty persisting for 4 years but diminishing in magnitude with each additional year. The adverse effects of consecutive canola plantings are more pronounced in wetter regions and at lower yield deciles. Conversely, canola yields are higher when planted after pulse crops (as opposed to after cereal crops).</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"117 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21739","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Canola (Brassica napus) acreage increased in Western Canada in recent years, leading to rotations with fewer break years between canola plantings. Field trials suggest that frequent plantings of canola reduce canola yields. However, there is considerable disagreement about the magnitude and persistence of these effects. We analyze the effect of rotational practices on canola yields in Saskatchewan using over 20 years of observational data, representing 61% of canola hectares in the province. We examine how the impact of rotations varies across time, soil zone, soil moisture conditions and the distribution of yields. We regress canola yields in Saskatchewan on the share of land that was planted with particular crops in previous years, using a battery of covariates and fixed effects to address potential bias in the model. After including these fixed effects, we cannot reject the hypothesis that there is no sample selection bias. We use an unconditional quantile estimator to investigate how rotations affect different deciles of the yield distribution. Our analysis confirms that crop rotations significantly influence canola yields, albeit more modest than field trials suggest. We find a 7.5% yield reduction when canola follows canola, compared to cereals, with this penalty persisting for 4 years but diminishing in magnitude with each additional year. The adverse effects of consecutive canola plantings are more pronounced in wetter regions and at lower yield deciles. Conversely, canola yields are higher when planted after pulse crops (as opposed to after cereal crops).
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.