Warmer Climate Reduces the Carbon Storage, Stability and Saturation Levels in Forest Soils

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-01-30 DOI:10.1029/2024EF004988
Yuntao Wu, Ziyang Peng, Xin Wang, Junsheng Huang, Lu Yang, Lingli Liu
{"title":"Warmer Climate Reduces the Carbon Storage, Stability and Saturation Levels in Forest Soils","authors":"Yuntao Wu,&nbsp;Ziyang Peng,&nbsp;Xin Wang,&nbsp;Junsheng Huang,&nbsp;Lu Yang,&nbsp;Lingli Liu","doi":"10.1029/2024EF004988","DOIUrl":null,"url":null,"abstract":"<p>Forest soils store about one-fifth of the global terrestrial biosphere carbon stock. However, our understanding of how soil geochemical, plant and microbial factors regulate forest soil organic carbon (SOC) storage, stability, and saturation levels remains limited. Here, we conducted a sampling campaign across a 5000-km natural forest transect in China, measuring climate, geochemical factors and SOC fractions with varying stability. Additionally, we compiled a global data set of SOC fractions in major forest biomes. Our field survey and global synthesis consistently demonstrate that warmer climates not only reduce the content of labile particle organic matter (POM), but also decrease the typically stable mineral-associated organic matter (MAOM), leading to a significant decline in total soil carbon storage. Additionally, warmer climates promote the crystallization of Fe/Al oxides, which decreases the formation efficiency of Fe/Al oxide associated organic complexes. Consequently, the mineralogical carbon saturation level declines from boreal forests (37%) to tropical forests (25%). Our findings underscore that, beyond the well-established climate impacts, soil geochemical properties play a pivotal role in shaping forest SOC composition and saturation levels across latitudes. This highlights that colder regions harbor larger and more stable carbon pools, and that ongoing climate warming and associated soil geochemical properties shift could potentially lead to a decline in soil carbon storage and its capacity to mitigate climate change.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 2","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004988","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF004988","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Forest soils store about one-fifth of the global terrestrial biosphere carbon stock. However, our understanding of how soil geochemical, plant and microbial factors regulate forest soil organic carbon (SOC) storage, stability, and saturation levels remains limited. Here, we conducted a sampling campaign across a 5000-km natural forest transect in China, measuring climate, geochemical factors and SOC fractions with varying stability. Additionally, we compiled a global data set of SOC fractions in major forest biomes. Our field survey and global synthesis consistently demonstrate that warmer climates not only reduce the content of labile particle organic matter (POM), but also decrease the typically stable mineral-associated organic matter (MAOM), leading to a significant decline in total soil carbon storage. Additionally, warmer climates promote the crystallization of Fe/Al oxides, which decreases the formation efficiency of Fe/Al oxide associated organic complexes. Consequently, the mineralogical carbon saturation level declines from boreal forests (37%) to tropical forests (25%). Our findings underscore that, beyond the well-established climate impacts, soil geochemical properties play a pivotal role in shaping forest SOC composition and saturation levels across latitudes. This highlights that colder regions harbor larger and more stable carbon pools, and that ongoing climate warming and associated soil geochemical properties shift could potentially lead to a decline in soil carbon storage and its capacity to mitigate climate change.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信