Manganese Partitioning and its Effect on Residual Stress

IF 1.9 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Chengbo Yan, Wenhong Ding, Yan Yang, Yang Chen, Qiaojun Yuan, Zhuang Chen, Wenzhi Yang
{"title":"Manganese Partitioning and its Effect on Residual Stress","authors":"Chengbo Yan,&nbsp;Wenhong Ding,&nbsp;Yan Yang,&nbsp;Yang Chen,&nbsp;Qiaojun Yuan,&nbsp;Zhuang Chen,&nbsp;Wenzhi Yang","doi":"10.1002/srin.202400542","DOIUrl":null,"url":null,"abstract":"<p>The residual stress in low-carbon high-strength steel is not effectively relaxed during alloy carbide precipitation but is fully relaxed during manganese partitioning. The specific microscopic mechanisms responsible for this observed phenomenon have yet to be fully elucidated. This study employs first-principles calculations in conjunction with experiments to demonstrate that alloy carbide precipitation leads to the formation of dense dislocation tangles that hinder carbon diffusion and carbide precipitation. Conversely, manganese partitioning aids carbon diffusion by altering dislocation morphology while also causing plastic deformation. The simultaneous occurrence of partitioning plasticity and precipitation plasticity during manganese partitioning results in a more significant relaxation of residual stress compared to alloy carbides precipitation: The plasticity coefficient for alloy carbide precipitation is 1.303 × 10<sup>−5</sup>, while the plasticity coefficient for manganese partition is 2.691 × 10<sup>−5</sup>. During alloy carbide precipitation, the elastic strain energy decreases to 43.48% of its initial value, whereas it can be further reduced to 25.29% after manganese partitioning.</p>","PeriodicalId":21929,"journal":{"name":"steel research international","volume":"96 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"steel research international","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/srin.202400542","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The residual stress in low-carbon high-strength steel is not effectively relaxed during alloy carbide precipitation but is fully relaxed during manganese partitioning. The specific microscopic mechanisms responsible for this observed phenomenon have yet to be fully elucidated. This study employs first-principles calculations in conjunction with experiments to demonstrate that alloy carbide precipitation leads to the formation of dense dislocation tangles that hinder carbon diffusion and carbide precipitation. Conversely, manganese partitioning aids carbon diffusion by altering dislocation morphology while also causing plastic deformation. The simultaneous occurrence of partitioning plasticity and precipitation plasticity during manganese partitioning results in a more significant relaxation of residual stress compared to alloy carbides precipitation: The plasticity coefficient for alloy carbide precipitation is 1.303 × 10−5, while the plasticity coefficient for manganese partition is 2.691 × 10−5. During alloy carbide precipitation, the elastic strain energy decreases to 43.48% of its initial value, whereas it can be further reduced to 25.29% after manganese partitioning.

锰的分配及其对残余应力的影响
低碳高强钢的残余应力在合金碳化物析出过程中没有得到有效松弛,而在锰分配过程中得到充分松弛。造成这一观察到的现象的具体微观机制尚未得到充分阐明。本研究采用第一性原理计算结合实验证明,合金碳化物的析出导致密集位错缠结的形成,阻碍了碳的扩散和碳化物的析出。相反,锰的分配通过改变位错形态来促进碳的扩散,同时也引起塑性变形。与合金碳化物析出相比,锰在析出过程中同时发生分配塑性和沉淀塑性,导致残余应力的松弛更为显著:合金碳化物析出的塑性系数为1.303 × 10−5,而锰析出的塑性系数为2.691 × 10−5。合金碳化物析出过程中,弹性应变能降至初始值的43.48%,而锰分配后,弹性应变能进一步降至25.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
steel research international
steel research international 工程技术-冶金工程
CiteScore
3.30
自引率
18.20%
发文量
319
审稿时长
1.9 months
期刊介绍: steel research international is a journal providing a forum for the publication of high-quality manuscripts in areas ranging from process metallurgy and metal forming to materials engineering as well as process control and testing. The emphasis is on steel and on materials involved in steelmaking and the processing of steel, such as refractories and slags. steel research international welcomes manuscripts describing basic scientific research as well as industrial research. The journal received a further increased, record-high Impact Factor of 1.522 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)). The journal was formerly well known as "Archiv für das Eisenhüttenwesen" and "steel research"; with effect from January 1, 2006, the former "Scandinavian Journal of Metallurgy" merged with Steel Research International. Hot Topics: -Steels for Automotive Applications -High-strength Steels -Sustainable steelmaking -Interstitially Alloyed Steels -Electromagnetic Processing of Metals -High Speed Forming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信