Matteo B. Bertagni, Salvatore Calabrese, Giuseppe Cipolla, Leonardo V. Noto, Amilcare Porporato
{"title":"Advancing Enhanced Weathering Modeling in Soils: Critical Comparison With Experimental Data","authors":"Matteo B. Bertagni, Salvatore Calabrese, Giuseppe Cipolla, Leonardo V. Noto, Amilcare Porporato","doi":"10.1029/2024MS004224","DOIUrl":null,"url":null,"abstract":"<p>Enhanced weathering (EW) is a promising strategy to remove atmospheric <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> by amending agricultural and forestry soils with ground silicate rocks. However, current model-based EW assessments face large uncertainties stemming from the intricate interplay among soil processes, compounded by the absence of a detailed comparison with available observational data. Here, we address this critical gap by first advancing a dynamic, ecohydrological, and biogeochemical Soil Model for Enhanced Weathering (SMEW). We then conduct a hierarchical model-experiment comparison with four experimental data sets of increasing complexity, from simple closed incubation systems to open mesocosm experiments. The comparison demonstrates SMEW's ability to capture the dynamics of primary variables, including soil moisture, alkalinity, and inorganic carbon. The comparison also reveals that weathering rates are consistently lower than traditionally assumed by up to two orders of magnitude. We finally discuss the implications for carbon removal scenarios and avenues for further theoretical and experimental explorations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004224","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004224","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced weathering (EW) is a promising strategy to remove atmospheric by amending agricultural and forestry soils with ground silicate rocks. However, current model-based EW assessments face large uncertainties stemming from the intricate interplay among soil processes, compounded by the absence of a detailed comparison with available observational data. Here, we address this critical gap by first advancing a dynamic, ecohydrological, and biogeochemical Soil Model for Enhanced Weathering (SMEW). We then conduct a hierarchical model-experiment comparison with four experimental data sets of increasing complexity, from simple closed incubation systems to open mesocosm experiments. The comparison demonstrates SMEW's ability to capture the dynamics of primary variables, including soil moisture, alkalinity, and inorganic carbon. The comparison also reveals that weathering rates are consistently lower than traditionally assumed by up to two orders of magnitude. We finally discuss the implications for carbon removal scenarios and avenues for further theoretical and experimental explorations.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.