The effect of calcite on the mechanical, morphological and thermal properties of virgin and recycled thermoplastic copolyester elastomer composites

IF 3.8 4区 工程技术 Q2 CHEMISTRY, APPLIED
Yunus Emre Sucu, Merve Dandan Doğancı
{"title":"The effect of calcite on the mechanical, morphological and thermal properties of virgin and recycled thermoplastic copolyester elastomer composites","authors":"Yunus Emre Sucu,&nbsp;Merve Dandan Doğancı","doi":"10.1002/vnl.22166","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>In this study, the effects of stearic acid-coated calcite (CaCO<sub>3</sub>) were investigated on the mechanical, thermal, and morphological properties of thermoplastic copolyester elastomers (COPE or TPE-E) and recycled COPEs (R-COPE). R-COPE, which consist of process wastes that are qualified as postindustrial recycled (PIR), were physically 100% recycled. The composites (virgin and recycled COPE) containing different concentrations of calcite (5–30 wt%) were prepared by melt compounding. It has been determined that mechanical properties such as impact strength and modulus increase with calcite concentration, while tensile strength decreases at higher concentrations owing to the stronger interfacial relationships between the polymer matrix and filler. Morphological studies revealed a good dispersion of calcite fillers at lower concentrations in the polymer matrix. The final composites obtained from recycled polymer had almost similar mechanical properties compared to virgin ones. This showed that recycled COPE could be used in many areas specifically automotive industry, as it gave results close to its original state with the addition of calcite with decreased cost.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>COPE were melt-blended with stearic acid-coated calcite (CaCO<sub>3</sub>).</li>\n \n <li>Recycled-COPEs were obtained from the physical recycling of factory production waste.</li>\n \n <li>The mechanical properties such as tensile modulus increased with calcite concentration.</li>\n \n <li>The thermal properties increased with increasing calcite concentration.</li>\n \n <li>R-COPE composites were obtained without any decrease in properties.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":17662,"journal":{"name":"Journal of Vinyl & Additive Technology","volume":"31 1","pages":"211-223"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/vnl.22166","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vinyl & Additive Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22166","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the effects of stearic acid-coated calcite (CaCO3) were investigated on the mechanical, thermal, and morphological properties of thermoplastic copolyester elastomers (COPE or TPE-E) and recycled COPEs (R-COPE). R-COPE, which consist of process wastes that are qualified as postindustrial recycled (PIR), were physically 100% recycled. The composites (virgin and recycled COPE) containing different concentrations of calcite (5–30 wt%) were prepared by melt compounding. It has been determined that mechanical properties such as impact strength and modulus increase with calcite concentration, while tensile strength decreases at higher concentrations owing to the stronger interfacial relationships between the polymer matrix and filler. Morphological studies revealed a good dispersion of calcite fillers at lower concentrations in the polymer matrix. The final composites obtained from recycled polymer had almost similar mechanical properties compared to virgin ones. This showed that recycled COPE could be used in many areas specifically automotive industry, as it gave results close to its original state with the addition of calcite with decreased cost.

Highlights

  • COPE were melt-blended with stearic acid-coated calcite (CaCO3).
  • Recycled-COPEs were obtained from the physical recycling of factory production waste.
  • The mechanical properties such as tensile modulus increased with calcite concentration.
  • The thermal properties increased with increasing calcite concentration.
  • R-COPE composites were obtained without any decrease in properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Vinyl & Additive Technology
Journal of Vinyl & Additive Technology 工程技术-材料科学:纺织
CiteScore
5.40
自引率
14.80%
发文量
73
审稿时长
>12 weeks
期刊介绍: Journal of Vinyl and Additive Technology is a peer-reviewed technical publication for new work in the fields of polymer modifiers and additives, vinyl polymers and selected review papers. Over half of all papers in JVAT are based on technology of additives and modifiers for all classes of polymers: thermoset polymers and both condensation and addition thermoplastics. Papers on vinyl technology include PVC additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信