Influence of Carbon Dioxide on the Phase Behavior of Pharmaceutical Drug-Polymer Dispersions

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Jana Klueppelberg, Ulrich A. Handge, Markus Thommes, Judith Winck
{"title":"Influence of Carbon Dioxide on the Phase Behavior of Pharmaceutical Drug-Polymer Dispersions","authors":"Jana Klueppelberg,&nbsp;Ulrich A. Handge,&nbsp;Markus Thommes,&nbsp;Judith Winck","doi":"10.1002/macp.202400359","DOIUrl":null,"url":null,"abstract":"<p>The formulation as amorphous solid dispersion (ASD) addresses recent challenges in the oral administration of poorly-soluble drugs by embedding them in highly-soluble carrier polymers. In this context, utilizing CO<sub>2</sub> as a processing agent is an innovative strategy to facilitate the dissolution of the drug in the polymer at comparatively low temperatures without the use of any organic solvents. Within this study, the influence of CO<sub>2</sub> on the phase behavior of ASD formulations is investigated. Therefore, high-pressure differential scanning calorimetry is applied to evaluate the dissolution of the drugs in the polymers and the glass transition temperatures under CO<sub>2</sub> of four formulations containing the drugs acetaminophen and itraconazole as well as the polymers Soluplus and vinylpyrrolidone/vinyl acetate copolymer. The glass transition temperatures of the ASD formulations decrease with CO<sub>2</sub> fraction dissolved in the polymer. The extent of <i>T<sub>g</sub></i> reduction is related to the spatial structure and intermolecular interactions of the polymers. Furthermore, the sorption of CO<sub>2</sub> accelerates the diffusion of the drugs in the plasticized polymers. However, phase separation is observed in some formulations under CO<sub>2</sub> loading which has an impact on the stability of the ASD and has to be considered in process design.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/macp.202400359","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400359","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The formulation as amorphous solid dispersion (ASD) addresses recent challenges in the oral administration of poorly-soluble drugs by embedding them in highly-soluble carrier polymers. In this context, utilizing CO2 as a processing agent is an innovative strategy to facilitate the dissolution of the drug in the polymer at comparatively low temperatures without the use of any organic solvents. Within this study, the influence of CO2 on the phase behavior of ASD formulations is investigated. Therefore, high-pressure differential scanning calorimetry is applied to evaluate the dissolution of the drugs in the polymers and the glass transition temperatures under CO2 of four formulations containing the drugs acetaminophen and itraconazole as well as the polymers Soluplus and vinylpyrrolidone/vinyl acetate copolymer. The glass transition temperatures of the ASD formulations decrease with CO2 fraction dissolved in the polymer. The extent of Tg reduction is related to the spatial structure and intermolecular interactions of the polymers. Furthermore, the sorption of CO2 accelerates the diffusion of the drugs in the plasticized polymers. However, phase separation is observed in some formulations under CO2 loading which has an impact on the stability of the ASD and has to be considered in process design.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信