Adaptive power management for multiaccess edge computing-based 6G-inspired massive Internet of Things

IF 1.5 Q3 TELECOMMUNICATIONS
Babatunde S. Awoyemi, Bodhaswar T. Maharaj
{"title":"Adaptive power management for multiaccess edge computing-based 6G-inspired massive Internet of Things","authors":"Babatunde S. Awoyemi,&nbsp;Bodhaswar T. Maharaj","doi":"10.1049/wss2.70000","DOIUrl":null,"url":null,"abstract":"<p>Multiaccess edge computing (MEC) is a dynamic approach for addressing the capacity and ultra-latency demands caused by the pervasive growth of real-time applications in next-generation (xG) wireless communication networks. Powerful computational resource-enriched virtual machines (VMs) are used in MEC to provide outstanding solutions. However, a major challenge with using VMs in xG networks is the high overhead caused by the excessive energy demands of VMs. To address this challenge, containers, which are generally more energy-efficient and less computationally demanding, are being advocated. This paper proposes a containerised edge computing model for power optimisation in 6G-inspired massive Internet-of-Things applications. The problem is formulated as a central processing unit energy consumption cost function based on quasi-finite system observations. To achieve practicable computational complexity, an approach that uses a search heuristic based on Lyapunov techniques is employed to obtain near-optimal solutions. Important performance metrics are successfully predicted using the online look-ahead technique. The predictive model used achieves an accuracy of 97% prediction compared to actual data. To further improve resource demand, an adaptive controller is used to schedule computational resources on a time slot basis in an adaptive manner while continuing to receive workload levels to plan future resource provisioning. The proposed technique is shown to perform better compared to a competitive baseline algorithm.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Multiaccess edge computing (MEC) is a dynamic approach for addressing the capacity and ultra-latency demands caused by the pervasive growth of real-time applications in next-generation (xG) wireless communication networks. Powerful computational resource-enriched virtual machines (VMs) are used in MEC to provide outstanding solutions. However, a major challenge with using VMs in xG networks is the high overhead caused by the excessive energy demands of VMs. To address this challenge, containers, which are generally more energy-efficient and less computationally demanding, are being advocated. This paper proposes a containerised edge computing model for power optimisation in 6G-inspired massive Internet-of-Things applications. The problem is formulated as a central processing unit energy consumption cost function based on quasi-finite system observations. To achieve practicable computational complexity, an approach that uses a search heuristic based on Lyapunov techniques is employed to obtain near-optimal solutions. Important performance metrics are successfully predicted using the online look-ahead technique. The predictive model used achieves an accuracy of 97% prediction compared to actual data. To further improve resource demand, an adaptive controller is used to schedule computational resources on a time slot basis in an adaptive manner while continuing to receive workload levels to plan future resource provisioning. The proposed technique is shown to perform better compared to a competitive baseline algorithm.

Abstract Image

基于多接入边缘计算的6g海量物联网的自适应电源管理
多接入边缘计算(MEC)是一种动态方法,用于解决下一代(xG)无线通信网络中实时应用的普遍增长所导致的容量和超延迟需求。MEC使用强大的计算资源丰富的虚拟机(vm)来提供出色的解决方案。然而,在xG网络中使用vm的一个主要挑战是由vm的过度能源需求引起的高开销。为了应对这一挑战,人们提倡使用通常更节能、计算要求更低的容器。本文提出了一种容器化边缘计算模型,用于6g启发的大规模物联网应用中的功率优化。该问题被表述为基于准有限系统观测的中央处理器能耗成本函数。为了达到可行的计算复杂度,采用了一种基于Lyapunov技术的启发式搜索方法来获得近似最优解。使用在线预检技术成功地预测了重要的性能指标。所使用的预测模型与实际数据相比,预测精度达到97%。为了进一步改善资源需求,使用自适应控制器以自适应方式在时间段基础上调度计算资源,同时继续接收工作负载级别以计划未来的资源供应。与竞争性基线算法相比,所提出的技术表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Wireless Sensor Systems
IET Wireless Sensor Systems TELECOMMUNICATIONS-
CiteScore
4.90
自引率
5.30%
发文量
13
审稿时长
33 weeks
期刊介绍: IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信