{"title":"Adaptive power management for multiaccess edge computing-based 6G-inspired massive Internet of Things","authors":"Babatunde S. Awoyemi, Bodhaswar T. Maharaj","doi":"10.1049/wss2.70000","DOIUrl":null,"url":null,"abstract":"<p>Multiaccess edge computing (MEC) is a dynamic approach for addressing the capacity and ultra-latency demands caused by the pervasive growth of real-time applications in next-generation (xG) wireless communication networks. Powerful computational resource-enriched virtual machines (VMs) are used in MEC to provide outstanding solutions. However, a major challenge with using VMs in xG networks is the high overhead caused by the excessive energy demands of VMs. To address this challenge, containers, which are generally more energy-efficient and less computationally demanding, are being advocated. This paper proposes a containerised edge computing model for power optimisation in 6G-inspired massive Internet-of-Things applications. The problem is formulated as a central processing unit energy consumption cost function based on quasi-finite system observations. To achieve practicable computational complexity, an approach that uses a search heuristic based on Lyapunov techniques is employed to obtain near-optimal solutions. Important performance metrics are successfully predicted using the online look-ahead technique. The predictive model used achieves an accuracy of 97% prediction compared to actual data. To further improve resource demand, an adaptive controller is used to schedule computational resources on a time slot basis in an adaptive manner while continuing to receive workload levels to plan future resource provisioning. The proposed technique is shown to perform better compared to a competitive baseline algorithm.</p>","PeriodicalId":51726,"journal":{"name":"IET Wireless Sensor Systems","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/wss2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Wireless Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/wss2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Multiaccess edge computing (MEC) is a dynamic approach for addressing the capacity and ultra-latency demands caused by the pervasive growth of real-time applications in next-generation (xG) wireless communication networks. Powerful computational resource-enriched virtual machines (VMs) are used in MEC to provide outstanding solutions. However, a major challenge with using VMs in xG networks is the high overhead caused by the excessive energy demands of VMs. To address this challenge, containers, which are generally more energy-efficient and less computationally demanding, are being advocated. This paper proposes a containerised edge computing model for power optimisation in 6G-inspired massive Internet-of-Things applications. The problem is formulated as a central processing unit energy consumption cost function based on quasi-finite system observations. To achieve practicable computational complexity, an approach that uses a search heuristic based on Lyapunov techniques is employed to obtain near-optimal solutions. Important performance metrics are successfully predicted using the online look-ahead technique. The predictive model used achieves an accuracy of 97% prediction compared to actual data. To further improve resource demand, an adaptive controller is used to schedule computational resources on a time slot basis in an adaptive manner while continuing to receive workload levels to plan future resource provisioning. The proposed technique is shown to perform better compared to a competitive baseline algorithm.
期刊介绍:
IET Wireless Sensor Systems is aimed at the growing field of wireless sensor networks and distributed systems, which has been expanding rapidly in recent years and is evolving into a multi-billion dollar industry. The Journal has been launched to give a platform to researchers and academics in the field and is intended to cover the research, engineering, technological developments, innovative deployment of distributed sensor and actuator systems. Topics covered include, but are not limited to theoretical developments of: Innovative Architectures for Smart Sensors;Nano Sensors and Actuators Unstructured Networking; Cooperative and Clustering Distributed Sensors; Data Fusion for Distributed Sensors; Distributed Intelligence in Distributed Sensors; Energy Harvesting for and Lifetime of Smart Sensors and Actuators; Cross-Layer Design and Layer Optimisation in Distributed Sensors; Security, Trust and Dependability of Distributed Sensors. The Journal also covers; Innovative Services and Applications for: Monitoring: Health, Traffic, Weather and Toxins; Surveillance: Target Tracking and Localization; Observation: Global Resources and Geological Activities (Earth, Forest, Mines, Underwater); Industrial Applications of Distributed Sensors in Green and Agile Manufacturing; Sensor and RFID Applications of the Internet-of-Things ("IoT"); Smart Metering; Machine-to-Machine Communications.