Multi-Model Assessment of Groundwater Recharge Across Europe Under Warming Climate

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-01-28 DOI:10.1029/2024EF005020
Rohini Kumar, Luis Samaniego, Stephan Thober, Oldrich Rakovec, Andreas Marx, Niko Wanders, Ming Pan, Falk Hesse, Sabine Attinger
{"title":"Multi-Model Assessment of Groundwater Recharge Across Europe Under Warming Climate","authors":"Rohini Kumar,&nbsp;Luis Samaniego,&nbsp;Stephan Thober,&nbsp;Oldrich Rakovec,&nbsp;Andreas Marx,&nbsp;Niko Wanders,&nbsp;Ming Pan,&nbsp;Falk Hesse,&nbsp;Sabine Attinger","doi":"10.1029/2024EF005020","DOIUrl":null,"url":null,"abstract":"<p>Climate change threatens the sustainable use of groundwater resources worldwide by affecting future recharge rates. However, assessments of global warming's impact on groundwater recharge at local scales are lacking. This study provides a continental-scale assessment of groundwater recharge changes in Europe, past, present, and future, at a <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>5</mn>\n <mo>×</mo>\n <mn>5</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(5\\times 5)$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>km</mtext>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation> ${\\text{km}}^{2}$</annotation>\n </semantics></math> resolution under different global warming levels (1.5, 2.0, and 3.0 K). Utilizing multi-model ensemble simulations from four hydrologic and land-surface models (HMs), our analysis incorporates E-OBS observational forcing data (1970–2015) and five bias-corrected and downscale climate model (GCMs) data sets covering the near-past to future climate conditions (1970–2100). Results reveal a north-south polarization in projected groundwater recharge change: declines over 25%–50% in the Mediterranean and increases over 25% in North Scandinavia at high warming levels (2.0–3.0 K). Central Europe shows minimal changes (<span></span><math>\n <semantics>\n <mrow>\n <mo>±</mo>\n </mrow>\n <annotation> $\\pm $</annotation>\n </semantics></math>5%) with larger uncertainty at lower warming levels. The southeastern Balkan and Mediterranean region exhibited high sensitivity to warming, with changes nearly doubling between 1.5 and 3.0 K. We identify greater uncertainty from differences among GCMs, though significant uncertainties due to HMs exist in regions like the Mediterranean, Nordic, and Balkan areas. The findings highlight the importance of using multi-model ensembles to assess future groundwater recharge changes in Europe and emphasize the need to mitigate impacts in higher warming scenarios.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005020","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change threatens the sustainable use of groundwater resources worldwide by affecting future recharge rates. However, assessments of global warming's impact on groundwater recharge at local scales are lacking. This study provides a continental-scale assessment of groundwater recharge changes in Europe, past, present, and future, at a ( 5 × 5 ) $(5\times 5)$ km 2 ${\text{km}}^{2}$ resolution under different global warming levels (1.5, 2.0, and 3.0 K). Utilizing multi-model ensemble simulations from four hydrologic and land-surface models (HMs), our analysis incorporates E-OBS observational forcing data (1970–2015) and five bias-corrected and downscale climate model (GCMs) data sets covering the near-past to future climate conditions (1970–2100). Results reveal a north-south polarization in projected groundwater recharge change: declines over 25%–50% in the Mediterranean and increases over 25% in North Scandinavia at high warming levels (2.0–3.0 K). Central Europe shows minimal changes ( ± $\pm $ 5%) with larger uncertainty at lower warming levels. The southeastern Balkan and Mediterranean region exhibited high sensitivity to warming, with changes nearly doubling between 1.5 and 3.0 K. We identify greater uncertainty from differences among GCMs, though significant uncertainties due to HMs exist in regions like the Mediterranean, Nordic, and Balkan areas. The findings highlight the importance of using multi-model ensembles to assess future groundwater recharge changes in Europe and emphasize the need to mitigate impacts in higher warming scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信