A novel sea surface evaporation scheme assessed by the thermal rotating shallow water model

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Masoud Rostami, Stefan Petri, Bijan Fallah, Farahnaz Fazel-Rastgar
{"title":"A novel sea surface evaporation scheme assessed by the thermal rotating shallow water model","authors":"Masoud Rostami,&nbsp;Stefan Petri,&nbsp;Bijan Fallah,&nbsp;Farahnaz Fazel-Rastgar","doi":"10.1002/asl.1287","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel sea surface evaporation scheme, along with its corresponding bulk aerodynamic formulation, is proposed to estimate sea surface evaporation, columnar humidity, and precipitation distribution within the atmosphere. The scheme is based on three distinct functions, each dependent on a single variable: zonal wind velocity, tropospheric (potential) temperature, and free convection. It is shown that the normalized Clausius–Clapeyron formula requires an adjustable scaling factor for real-world applications, calibrated using empirical fitness curves. To validate the proposed approach, we employ a model based on the pseudo-spectral moist-convective thermal rotating shallow water model, with minimal parameterization over the entire sphere. ECMWF Reanalysis 5th Generation (ERA5) reanalysis data are used to compare the model's results with observations. The model is tested across different seasons to assess its reliability under various weather conditions. The Dedalus algorithm, which handles spin-weighted spherical harmonics, is employed to address the pseudo-spectral problem-solving tasks of the model.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1287","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1287","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel sea surface evaporation scheme, along with its corresponding bulk aerodynamic formulation, is proposed to estimate sea surface evaporation, columnar humidity, and precipitation distribution within the atmosphere. The scheme is based on three distinct functions, each dependent on a single variable: zonal wind velocity, tropospheric (potential) temperature, and free convection. It is shown that the normalized Clausius–Clapeyron formula requires an adjustable scaling factor for real-world applications, calibrated using empirical fitness curves. To validate the proposed approach, we employ a model based on the pseudo-spectral moist-convective thermal rotating shallow water model, with minimal parameterization over the entire sphere. ECMWF Reanalysis 5th Generation (ERA5) reanalysis data are used to compare the model's results with observations. The model is tested across different seasons to assess its reliability under various weather conditions. The Dedalus algorithm, which handles spin-weighted spherical harmonics, is employed to address the pseudo-spectral problem-solving tasks of the model.

Abstract Image

用热旋转浅水模式评估一种新的海面蒸发方案
在这项研究中,提出了一种新的海面蒸发方案,以及相应的体积气动公式,用于估算海面蒸发、柱状湿度和大气内降水分布。该方案基于三个不同的函数,每个函数都依赖于一个变量:纬向风速、对流层(潜在)温度和自由对流。规范化的Clausius-Clapeyron公式需要一个可调的比例因子,用于实际应用,使用经验适应度曲线进行校准。为了验证所提出的方法,我们采用了一个基于伪光谱水分-对流热旋转浅水模型的模型,在整个球体上最小的参数化。ECMWF再分析第5代(ERA5)再分析数据用于将模型结果与观测结果进行比较。该模型在不同季节进行了测试,以评估其在不同天气条件下的可靠性。采用处理自旋加权球谐波的Dedalus算法来解决模型的伪谱问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信