An Overview of H2 and CH4 as Environmentally Sustainable Alternative Reductants to C for Chromite Smelting

IF 6.2 Q2 ENERGY & FUELS
Margaretha Susanna Ernst, Stephanus Petrus Du Preez
{"title":"An Overview of H2 and CH4 as Environmentally Sustainable Alternative Reductants to C for Chromite Smelting","authors":"Margaretha Susanna Ernst,&nbsp;Stephanus Petrus Du Preez","doi":"10.1002/aesr.202400236","DOIUrl":null,"url":null,"abstract":"<p>The application of hydrogen (H<sub>2</sub>) and methane (CH<sub>4</sub>) as gaseous reductants for pure chromite (FeCr<sub>2</sub>O<sub>4</sub>) is reviewed in four theoretical approaches. These approaches are evaluated against the conventional process, where the sole reductant is a solid carbon (C) source. The sustainability is measured by gaseous carbon monoxide (CO(g)) formation, determined by the reaction stoichiometry of each theoretical approach. Decreased CO(g) formation is critical for alleviating the adverse environmental impact of ferroalloy production. The prereduction of FeCr<sub>2</sub>O<sub>4</sub> by H<sub>2</sub>, followed by reduction by CH<sub>4</sub> shows the largest decrease in CO(g) formation, i.e., a 75% decrease, compared to the conventional process. Furthermore, the H<sub>2</sub>-based prereduction and CH<sub>4</sub>-based primary reduction occur at lower temperatures than C-based reduction, due to kinetic advantages, and thus decrease energy consumption. The overview discusses the environmental impact of substituting C with H<sub>2</sub> and CH<sub>4</sub> and briefly discusses how it can be implemented in industry.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400236","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of hydrogen (H2) and methane (CH4) as gaseous reductants for pure chromite (FeCr2O4) is reviewed in four theoretical approaches. These approaches are evaluated against the conventional process, where the sole reductant is a solid carbon (C) source. The sustainability is measured by gaseous carbon monoxide (CO(g)) formation, determined by the reaction stoichiometry of each theoretical approach. Decreased CO(g) formation is critical for alleviating the adverse environmental impact of ferroalloy production. The prereduction of FeCr2O4 by H2, followed by reduction by CH4 shows the largest decrease in CO(g) formation, i.e., a 75% decrease, compared to the conventional process. Furthermore, the H2-based prereduction and CH4-based primary reduction occur at lower temperatures than C-based reduction, due to kinetic advantages, and thus decrease energy consumption. The overview discusses the environmental impact of substituting C with H2 and CH4 and briefly discusses how it can be implemented in industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信