Max Franck, Jarek Dabrowski, Markus Andreas Schubert, Dominique Vignaud, Mohamed Achehboune, Jean-François Colomer, Luc Henrard, Christian Wenger, Mindaugas Lukosius
{"title":"Investigating Impacts of Local Pressure and Temperature on CVD Growth of Hexagonal Boron Nitride on Ge(001)/Si","authors":"Max Franck, Jarek Dabrowski, Markus Andreas Schubert, Dominique Vignaud, Mohamed Achehboune, Jean-François Colomer, Luc Henrard, Christian Wenger, Mindaugas Lukosius","doi":"10.1002/admi.202400467","DOIUrl":null,"url":null,"abstract":"<p>The chemical vapor deposition (CVD) growth of hexagonal boron nitride (hBN) on Ge substrates is a promising pathway to high-quality hBN thin films without metal contaminations for microelectronic applications, but the effect of CVD process parameters on the hBN properties is not well understood yet. The influence of local changes in pressure and temperature due to different reactor configurations on the structure and quality of hBN films grown on Ge(001)/Si is studied. Injection of the borazine precursor close to the sample surface results in an inhomogeneous film thickness, attributed to an inhomogeneous pressure distribution at the surface, as shown by computational fluid dynamics simulations. The additional formation of nanocrystalline islands is attributed to unfavorable gas phase reactions due to the radiative heating of the injector. Both issues are mitigated by increasing the injector-sample distance, leading to an 86% reduction in pressure variability on the sample surface and a 200 °C reduction in precursor temperature. The resulting hBN films exhibit no nanocrystalline islands, improved thickness homogeneity, and high crystalline quality (Raman FWHM = 23 cm<sup>−1</sup>). This is competitive with hBN films grown on other non-metal substrates but achieved at lower temperature and with a low thickness of only a few nanometers.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202400467","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202400467","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The chemical vapor deposition (CVD) growth of hexagonal boron nitride (hBN) on Ge substrates is a promising pathway to high-quality hBN thin films without metal contaminations for microelectronic applications, but the effect of CVD process parameters on the hBN properties is not well understood yet. The influence of local changes in pressure and temperature due to different reactor configurations on the structure and quality of hBN films grown on Ge(001)/Si is studied. Injection of the borazine precursor close to the sample surface results in an inhomogeneous film thickness, attributed to an inhomogeneous pressure distribution at the surface, as shown by computational fluid dynamics simulations. The additional formation of nanocrystalline islands is attributed to unfavorable gas phase reactions due to the radiative heating of the injector. Both issues are mitigated by increasing the injector-sample distance, leading to an 86% reduction in pressure variability on the sample surface and a 200 °C reduction in precursor temperature. The resulting hBN films exhibit no nanocrystalline islands, improved thickness homogeneity, and high crystalline quality (Raman FWHM = 23 cm−1). This is competitive with hBN films grown on other non-metal substrates but achieved at lower temperature and with a low thickness of only a few nanometers.
期刊介绍:
Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018.
The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface.
Advanced Materials Interfaces covers all topics in interface-related research:
Oil / water separation,
Applications of nanostructured materials,
2D materials and heterostructures,
Surfaces and interfaces in organic electronic devices,
Catalysis and membranes,
Self-assembly and nanopatterned surfaces,
Composite and coating materials,
Biointerfaces for technical and medical applications.
Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.