Operational Capability of Drone-Based Meteorological Profiling in an Urban Area

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Jun Inoue, Hiromu Seko, Kazutoshi Sato, Tetsu Sakai
{"title":"Operational Capability of Drone-Based Meteorological Profiling in an Urban Area","authors":"Jun Inoue,&nbsp;Hiromu Seko,&nbsp;Kazutoshi Sato,&nbsp;Tetsu Sakai","doi":"10.1029/2024JD041927","DOIUrl":null,"url":null,"abstract":"<p>During the Uncrewed Aircraft Systems Demonstration Campaign (UAS-DC), led by the World Meteorological Organization (WMO), twice-daily meteorological profiling was conducted for 2 months at the Meteorological Research Institute in Tsukuba City (Japan), which is identified as a densely inhabited district. This campaign was instigated to assess the feasibility of obtaining continuous daily measurements for the long term (over a period of more than 1 month), to distribute the data in a format designated for numerical weather prediction, and to evaluate data quality compared to conventional meteorological data. Three types of uncrewed aircraft systems were utilized, that is, a meteorological medium-sized hexacopter and medium- and small-sized commercial drones with meteorological sensors attached. The maximum flight height was limited to 900 m above ground level owing to airspace regulations around the observation site. Compared with routine radiosonde data, the bias of air temperature, relative humidity, and wind speed measurements was less than 0.3 K, 1.5%, and 0.6 m <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{s}}^{-1}$</annotation>\n </semantics></math>, respectively, thereby meeting WMO requirements. Moreover, data transfer to the WMO-prepared repository was completed within 30 min after measurement acquisition. Based on user experience, several aspects regarding the UAS-DC campaign were discussed from the perspective of sustainable operation and atmospheric boundary layer research.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD041927","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041927","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During the Uncrewed Aircraft Systems Demonstration Campaign (UAS-DC), led by the World Meteorological Organization (WMO), twice-daily meteorological profiling was conducted for 2 months at the Meteorological Research Institute in Tsukuba City (Japan), which is identified as a densely inhabited district. This campaign was instigated to assess the feasibility of obtaining continuous daily measurements for the long term (over a period of more than 1 month), to distribute the data in a format designated for numerical weather prediction, and to evaluate data quality compared to conventional meteorological data. Three types of uncrewed aircraft systems were utilized, that is, a meteorological medium-sized hexacopter and medium- and small-sized commercial drones with meteorological sensors attached. The maximum flight height was limited to 900 m above ground level owing to airspace regulations around the observation site. Compared with routine radiosonde data, the bias of air temperature, relative humidity, and wind speed measurements was less than 0.3 K, 1.5%, and 0.6 m s 1 ${\mathrm{s}}^{-1}$ , respectively, thereby meeting WMO requirements. Moreover, data transfer to the WMO-prepared repository was completed within 30 min after measurement acquisition. Based on user experience, several aspects regarding the UAS-DC campaign were discussed from the perspective of sustainable operation and atmospheric boundary layer research.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信