{"title":"BNN-LSTM-DE Surrogate Model–Assisted Antenna Optimization Method Based on Data Selection","authors":"Jinlong Sun, Yubo Tian, Zhiwei Zhu","doi":"10.1155/mmce/6622761","DOIUrl":null,"url":null,"abstract":"<p>The use of surrogate models in assisting evolutionary algorithms for antenna optimization has achieved significant research outcomes. The construction of surrogate model primarily depends on two aspects; one is the selection of datasets, and the other is the model’s structure and performance. This paper proposes a novel dataset selection method aimed at enhancing the performance of the constructed surrogate model. Additionally, based on Bayesian neural network (BNN) and leveraging the advantages of handling sequence data with long short-term memory (LSTM), a BNN-LSTM surrogate model is introduced. After training, this surrogate model is used as the fitness evaluation function, enabling optimization design based on differential evolution (DE) algorithm. Experimental validations are conducted using the optimizations of a dual-frequency slotted patch antenna and a rectangular cut-corner ultrawideband antenna as examples. Results demonstrate that the proposed surrogate model exhibits high accuracy, providing a guidance for antenna optimization.</p>","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":"2024 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/mmce/6622761","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/mmce/6622761","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of surrogate models in assisting evolutionary algorithms for antenna optimization has achieved significant research outcomes. The construction of surrogate model primarily depends on two aspects; one is the selection of datasets, and the other is the model’s structure and performance. This paper proposes a novel dataset selection method aimed at enhancing the performance of the constructed surrogate model. Additionally, based on Bayesian neural network (BNN) and leveraging the advantages of handling sequence data with long short-term memory (LSTM), a BNN-LSTM surrogate model is introduced. After training, this surrogate model is used as the fitness evaluation function, enabling optimization design based on differential evolution (DE) algorithm. Experimental validations are conducted using the optimizations of a dual-frequency slotted patch antenna and a rectangular cut-corner ultrawideband antenna as examples. Results demonstrate that the proposed surrogate model exhibits high accuracy, providing a guidance for antenna optimization.
期刊介绍:
International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology.
Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . .
-Computer-Aided Modeling
-Computer-Aided Analysis
-Computer-Aided Optimization
-Software and Manufacturing Techniques
-Computer-Aided Measurements
-Measurements Interfaced with CAD Systems
In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.