A novel strategy for simultaneous super-resolution reconstruction and denoising of post-stack seismic profile

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Wenshuo Yu, Shiqi Dong, Shaoping Lu, Xintong Dong
{"title":"A novel strategy for simultaneous super-resolution reconstruction and denoising of post-stack seismic profile","authors":"Wenshuo Yu,&nbsp;Shiqi Dong,&nbsp;Shaoping Lu,&nbsp;Xintong Dong","doi":"10.1111/1365-2478.13646","DOIUrl":null,"url":null,"abstract":"<p>Post-stack seismic profiles are images reflecting geological structures which provide a critical foundation for understanding the distribution of oil and gas resources. However, due to the limitations of seismic acquisition equipment and data collecting geometry, the post-stack profiles suffer from low resolution and strong noise issues, which severely affects subsequent seismic interpretation. To better enhance the spatial resolution and signal-to-noise ratio of post-seismic profiles, a multi-scale attention encoder–decoder network based on generative adversarial network is proposed. This method improves the resolution of post-stack profiles and effectively suppresses noises and recovers weak signals as well. A multi-scale residual module is proposed to extract geological features under different receptive fields. At the same time, an attention module is designed to further guide the network to focus on important feature information. Additionally, to better recover the global and local information of post-stack profiles, an adversarial network based on a Markov discriminator is proposed. Finally, by introducing an edge information preservation loss function, the conventional loss function of the Generative Adversarial Network is improved, which enables better recovery of the edge information of the original post-stack profiles. Experimental results on simulated and field post-stack profiles demonstrate that the proposed multi-scale attention encoder–decoder network based on generative adversarial network method outperforms two advanced convolutional neural network-based methods in noise suppression and weak signal recovery. Furthermore, the profiles reconstructed by the multi-scale attention encoder–decoder network based on generative adversarial network method preserve more geological structures.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 1","pages":"96-112"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13646","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Post-stack seismic profiles are images reflecting geological structures which provide a critical foundation for understanding the distribution of oil and gas resources. However, due to the limitations of seismic acquisition equipment and data collecting geometry, the post-stack profiles suffer from low resolution and strong noise issues, which severely affects subsequent seismic interpretation. To better enhance the spatial resolution and signal-to-noise ratio of post-seismic profiles, a multi-scale attention encoder–decoder network based on generative adversarial network is proposed. This method improves the resolution of post-stack profiles and effectively suppresses noises and recovers weak signals as well. A multi-scale residual module is proposed to extract geological features under different receptive fields. At the same time, an attention module is designed to further guide the network to focus on important feature information. Additionally, to better recover the global and local information of post-stack profiles, an adversarial network based on a Markov discriminator is proposed. Finally, by introducing an edge information preservation loss function, the conventional loss function of the Generative Adversarial Network is improved, which enables better recovery of the edge information of the original post-stack profiles. Experimental results on simulated and field post-stack profiles demonstrate that the proposed multi-scale attention encoder–decoder network based on generative adversarial network method outperforms two advanced convolutional neural network-based methods in noise suppression and weak signal recovery. Furthermore, the profiles reconstructed by the multi-scale attention encoder–decoder network based on generative adversarial network method preserve more geological structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信