Yi Liu, Tianyi Hou, Wei Zhang, Bin Gou, Faqiang Li, Haonan Wang, Xin Deng, Dinggen Li, Henghui Xu, Yunhui Huang
{"title":"Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries","authors":"Yi Liu, Tianyi Hou, Wei Zhang, Bin Gou, Faqiang Li, Haonan Wang, Xin Deng, Dinggen Li, Henghui Xu, Yunhui Huang","doi":"10.1002/idm2.12225","DOIUrl":null,"url":null,"abstract":"<p>Commercial polyolefin separators in lithium batteries encounter issues of uncontrolled lithium-dendrite growth and safety incidents due to their low Li<sup>+</sup> transference numbers (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n \n <msup>\n <mi>Li</mi>\n \n <mo>+</mo>\n </msup>\n </msub>\n </mrow>\n </semantics></math>) and low melting points. To address these challenges, this study proposes an innovative approach by upgrading conventional separators through the incorporation of metal-organic framework (MOF)-confined polyoxometalate (POM). The presence of POM restricts anion diffusion through electrostatic repulsion while facilitating Li<sup>+</sup> transport within MOF nanochannels through their affinity for lithium ions. Moreover, MOF confinement effectively mitigates the acidification of electrolytes induced by POM. As a proof-of-concept, the polypropylene separators decorated with phosphotungstic acid@UIO66 (denoted as PW<sub>12</sub>@UIO66-PP) exhibit remarkable lithium-ion conductivity of 0.78 mS cm<sup>−1</sup> with a high <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n \n <msup>\n <mi>Li</mi>\n \n <mo>+</mo>\n </msup>\n </msub>\n </mrow>\n </semantics></math> of 0.75 at room temperature. The modified separators also display excellent thermal stability, preventing significant shrinkage even at 150°C. Furthermore, Li symmetric cells employing PW<sub>12</sub>@UIO66-PP separators exhibit stable cycling for 1000 h, benefiting from rapid Li-ion transport and uniform deposition. Additionally, the modified separator shows promising adaptability to industrial manufacturing of lithium-ion batteries, as evidenced by the assembly of a 4 Ah NCM811/graphite pouch cell that retains 97% capacity after 350 cycles at C/3, thus highlighting its potential for practical applications.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 1","pages":"190-200"},"PeriodicalIF":24.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12225","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.12225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Commercial polyolefin separators in lithium batteries encounter issues of uncontrolled lithium-dendrite growth and safety incidents due to their low Li+ transference numbers () and low melting points. To address these challenges, this study proposes an innovative approach by upgrading conventional separators through the incorporation of metal-organic framework (MOF)-confined polyoxometalate (POM). The presence of POM restricts anion diffusion through electrostatic repulsion while facilitating Li+ transport within MOF nanochannels through their affinity for lithium ions. Moreover, MOF confinement effectively mitigates the acidification of electrolytes induced by POM. As a proof-of-concept, the polypropylene separators decorated with phosphotungstic acid@UIO66 (denoted as PW12@UIO66-PP) exhibit remarkable lithium-ion conductivity of 0.78 mS cm−1 with a high of 0.75 at room temperature. The modified separators also display excellent thermal stability, preventing significant shrinkage even at 150°C. Furthermore, Li symmetric cells employing PW12@UIO66-PP separators exhibit stable cycling for 1000 h, benefiting from rapid Li-ion transport and uniform deposition. Additionally, the modified separator shows promising adaptability to industrial manufacturing of lithium-ion batteries, as evidenced by the assembly of a 4 Ah NCM811/graphite pouch cell that retains 97% capacity after 350 cycles at C/3, thus highlighting its potential for practical applications.