Wajiha Rahim Khan, Muhammad Ahmad Kamran, Misha Urooj Khan, Malik Muhammad Ibrahim, Kwang Su Kim, Muhammad Umair Ali
{"title":"Diabetes Prediction Using an Optimized Variational Quantum Classifier","authors":"Wajiha Rahim Khan, Muhammad Ahmad Kamran, Misha Urooj Khan, Malik Muhammad Ibrahim, Kwang Su Kim, Muhammad Umair Ali","doi":"10.1155/int/1351522","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Quantum information processing introduces novel approaches for classical data encoding to encompass the complex patterns of input data of practical computational challenges using basic principles of quantum mechanics. The classification of diabetes is an example of a problem that can be efficiently resolved by using quantum unitary operations and the variational quantum classifier (VQC). This study demonstrates the effects of the number of qubits, types of feature maps, optimizers’ class, and the number of layers in the parametrized circuit, and the number of learnable parameters in ansatz influences the effectiveness of the VQC. In total, 76 variants of VQC are analyzed for four and eight qubits’ cases and their results are compared with six classical machine learning models to predict diabetes. Three different types of feature maps (Pauli, Z, and ZZ) are implemented during analysis in addition to three different optimizers (COBYLA, SPSA and SLSQP). Experiments are performed using the PIMA Indian Diabetes Dataset (PIDD). The results conclude that VQC with six layers embedded with an error correction scaling factor of 0.01 and having ZZ feature map and COBYLA optimizer outperforms other quantum variants. The optimal proposed model attained the accuracy of 0.85 and 0.80 for eight and four qubits’ cases, respectively. In addition, the final quantum model among 76 variants was compared with six classical machine learning models. The results suggest that the proposed VQC model has outperformed four classical models including SVM, random forest (RF), decision tree (DT), and linear regression (LR).</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/1351522","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/1351522","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum information processing introduces novel approaches for classical data encoding to encompass the complex patterns of input data of practical computational challenges using basic principles of quantum mechanics. The classification of diabetes is an example of a problem that can be efficiently resolved by using quantum unitary operations and the variational quantum classifier (VQC). This study demonstrates the effects of the number of qubits, types of feature maps, optimizers’ class, and the number of layers in the parametrized circuit, and the number of learnable parameters in ansatz influences the effectiveness of the VQC. In total, 76 variants of VQC are analyzed for four and eight qubits’ cases and their results are compared with six classical machine learning models to predict diabetes. Three different types of feature maps (Pauli, Z, and ZZ) are implemented during analysis in addition to three different optimizers (COBYLA, SPSA and SLSQP). Experiments are performed using the PIMA Indian Diabetes Dataset (PIDD). The results conclude that VQC with six layers embedded with an error correction scaling factor of 0.01 and having ZZ feature map and COBYLA optimizer outperforms other quantum variants. The optimal proposed model attained the accuracy of 0.85 and 0.80 for eight and four qubits’ cases, respectively. In addition, the final quantum model among 76 variants was compared with six classical machine learning models. The results suggest that the proposed VQC model has outperformed four classical models including SVM, random forest (RF), decision tree (DT), and linear regression (LR).
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.