A Data Decomposition and End-to-End Optimization-Based Monthly Carbon Emission Intensity of Electricity Forecasting Method

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yue Yan, Haoran Feng, Jinwei Song, Shixu Zhang, Shize Zhang, Qi He
{"title":"A Data Decomposition and End-to-End Optimization-Based Monthly Carbon Emission Intensity of Electricity Forecasting Method","authors":"Yue Yan,&nbsp;Haoran Feng,&nbsp;Jinwei Song,&nbsp;Shixu Zhang,&nbsp;Shize Zhang,&nbsp;Qi He","doi":"10.1155/etep/9159507","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Accurate high-resolution carbon emission intensity of electricity forecasting (CIF) can assist multi-staker in timely adjusting their electricity consumption strategies to gain benefits. Few studies attempt to perform high-resolution (monthly and above) CIF due to the limited carbon emission data. High-resolution electricity data is easily available, and there is a coupling relationship between electricity and carbon emission data, making it possible to perform high-resolution CIF. Therefore, the paper proposes an end-to-end monthly CIF approach using annual carbon emission and monthly electricity consumption data, which can be divided into two stages. In Stage I, a monthly carbon emission data generator based on the Denton decomposition method is proposed. In Stage II, support vector machine (SVM), known for their effectiveness in small-sample prediction, are employed for monthly CIF. To ensure that the decomposed data effectively improves the predictor’s performance, we propose an end-to-end optimization strategy. This strategy feeds back the predictor’s performance on actual monthly data as optimization target to the generator and uses differential evolution algorithms (DEA) to optimize and adjust the decomposed data. Case studies conducted using actual data from Guangdong Province, China, demonstrate that the proposed method can effectively enhance monthly data, thereby improving prediction accuracy.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":"2025 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/etep/9159507","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/etep/9159507","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate high-resolution carbon emission intensity of electricity forecasting (CIF) can assist multi-staker in timely adjusting their electricity consumption strategies to gain benefits. Few studies attempt to perform high-resolution (monthly and above) CIF due to the limited carbon emission data. High-resolution electricity data is easily available, and there is a coupling relationship between electricity and carbon emission data, making it possible to perform high-resolution CIF. Therefore, the paper proposes an end-to-end monthly CIF approach using annual carbon emission and monthly electricity consumption data, which can be divided into two stages. In Stage I, a monthly carbon emission data generator based on the Denton decomposition method is proposed. In Stage II, support vector machine (SVM), known for their effectiveness in small-sample prediction, are employed for monthly CIF. To ensure that the decomposed data effectively improves the predictor’s performance, we propose an end-to-end optimization strategy. This strategy feeds back the predictor’s performance on actual monthly data as optimization target to the generator and uses differential evolution algorithms (DEA) to optimize and adjust the decomposed data. Case studies conducted using actual data from Guangdong Province, China, demonstrate that the proposed method can effectively enhance monthly data, thereby improving prediction accuracy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Transactions on Electrical Energy Systems
International Transactions on Electrical Energy Systems ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
6.70
自引率
8.70%
发文量
342
期刊介绍: International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems. Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信