{"title":"Efficiency Improvement of NiOx-Based Hole Transport Layers in Passivated Contact Crystalline Silicon Solar Cells","authors":"Hai Zhang, Qian Kang, Yanhao Wang, Jingjie Li, Siyi Liu, Hui Yan, Shanting Zhang, Dongdong Li, Yongzhe Zhang","doi":"10.1002/solr.202400727","DOIUrl":null,"url":null,"abstract":"<p>Passivated contact crystalline silicon (<i>c</i>-Si) solar cells with nickel oxide (NiO<sub><i>x</i></sub>) as a hole transport layer (HTL) are a promising and efficient solar cell that has received much attention. However, the current low open circuit voltage (<i>V</i><sub>oc</sub>) and low stability of <i>c</i>-Si solar cells with NiO<sub><i>x</i></sub> as the HTL are due to the bad passivation and the ion diffusion, which has limited the development of NiO<sub><i>x</i></sub>-based <i>c</i>-Si solar cells. Herein, the performance of doping-free asymmetric passivated contact <i>c</i>-Si heterojunction solar cells is improved by using hydrogen-doped aluminum oxide (H<span></span>Al<sub>2</sub>O<sub>3</sub>) as the passivation layer and annealing in forming gas (nitrogen, hydrogen mixture FGA), as well as by introducing an economically saving composite Ni/Ag electrode. Finally, a 20.29% power conversion efficiency is achieved from <i>p</i>-Si/H<span></span>Al<sub>2</sub>O<sub>3</sub>(FGA)/NiO<sub><i>x</i></sub>/Ni/Ag back-contact <i>c</i>-Si solar cells, which is the highest efficiency reported so far for <i>c</i>-Si solar cells with NiO<sub><i>x</i></sub> as the HTLs. Furthermore, the efficiency of the <i>p</i>-Si/H<span></span>Al<sub>2</sub>O<sub>3</sub>(FGA)/NiO<sub><i>x</i></sub>/Ni/Ag remains above 20% after 30 days of storage in an atmospheric environment, demonstrating its long-term stability. This study demonstrates the potential for industrialization of NiO<sub><i>x</i></sub>-based HTL <i>c</i>-Si solar cells with high performance and high stability.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 2","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400727","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Passivated contact crystalline silicon (c-Si) solar cells with nickel oxide (NiOx) as a hole transport layer (HTL) are a promising and efficient solar cell that has received much attention. However, the current low open circuit voltage (Voc) and low stability of c-Si solar cells with NiOx as the HTL are due to the bad passivation and the ion diffusion, which has limited the development of NiOx-based c-Si solar cells. Herein, the performance of doping-free asymmetric passivated contact c-Si heterojunction solar cells is improved by using hydrogen-doped aluminum oxide (HAl2O3) as the passivation layer and annealing in forming gas (nitrogen, hydrogen mixture FGA), as well as by introducing an economically saving composite Ni/Ag electrode. Finally, a 20.29% power conversion efficiency is achieved from p-Si/HAl2O3(FGA)/NiOx/Ni/Ag back-contact c-Si solar cells, which is the highest efficiency reported so far for c-Si solar cells with NiOx as the HTLs. Furthermore, the efficiency of the p-Si/HAl2O3(FGA)/NiOx/Ni/Ag remains above 20% after 30 days of storage in an atmospheric environment, demonstrating its long-term stability. This study demonstrates the potential for industrialization of NiOx-based HTL c-Si solar cells with high performance and high stability.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.