{"title":"A quantitative version of Northcott's theorem on points of bounded height: The function field case","authors":"Jeffrey Lin Thunder","doi":"10.1112/jlms.70059","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> be a finite algebraic extension of the field of rational functions in one indeterminate over a finite field and let <span></span><math>\n <semantics>\n <mover>\n <mi>K</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{K}$</annotation>\n </semantics></math> denote an algebraic closure of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>. For given integers <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$m\\geqslant 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\geqslant 2$</annotation>\n </semantics></math> we count points in projective space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mover>\n <mi>K</mi>\n <mo>¯</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {P}^{n-1}(\\overline{K})$</annotation>\n </semantics></math> with absolute logarithmic height <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and generating an extension of degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>></mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d>2$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>. Specifically, we derive an asymptotic estimate for the number of such points as <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$m\\rightarrow \\infty$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>></mo>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n>d+1$</annotation>\n </semantics></math> and orders of growth for the number of such points when <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>⩽</mo>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2\\leqslant n\\leqslant d+1$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a finite algebraic extension of the field of rational functions in one indeterminate over a finite field and let denote an algebraic closure of . For given integers and we count points in projective space with absolute logarithmic height and generating an extension of degree over . Specifically, we derive an asymptotic estimate for the number of such points as when and orders of growth for the number of such points when .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.