A quantitative version of Northcott's theorem on points of bounded height: The function field case

IF 1 2区 数学 Q1 MATHEMATICS
Jeffrey Lin Thunder
{"title":"A quantitative version of Northcott's theorem on points of bounded height: The function field case","authors":"Jeffrey Lin Thunder","doi":"10.1112/jlms.70059","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> be a finite algebraic extension of the field of rational functions in one indeterminate over a finite field and let <span></span><math>\n <semantics>\n <mover>\n <mi>K</mi>\n <mo>¯</mo>\n </mover>\n <annotation>$\\overline{K}$</annotation>\n </semantics></math> denote an algebraic closure of <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>. For given integers <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$m\\geqslant 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\geqslant 2$</annotation>\n </semantics></math> we count points in projective space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>P</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mover>\n <mi>K</mi>\n <mo>¯</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {P}^{n-1}(\\overline{K})$</annotation>\n </semantics></math> with absolute logarithmic height <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and generating an extension of degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>&gt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d&gt;2$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>. Specifically, we derive an asymptotic estimate for the number of such points as <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$m\\rightarrow \\infty$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>&gt;</mo>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n&gt;d+1$</annotation>\n </semantics></math> and orders of growth for the number of such points when <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>⩽</mo>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2\\leqslant n\\leqslant d+1$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70059","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let K $K$ be a finite algebraic extension of the field of rational functions in one indeterminate over a finite field and let K ¯ $\overline{K}$ denote an algebraic closure of K $K$ . For given integers m 0 $m\geqslant 0$ and n 2 $n\geqslant 2$ we count points in projective space P n 1 ( K ¯ ) $\mathbb {P}^{n-1}(\overline{K})$ with absolute logarithmic height m $m$ and generating an extension of degree d > 2 $d>2$ over K $K$ . Specifically, we derive an asymptotic estimate for the number of such points as m $m\rightarrow \infty$ when n > d + 1 $n>d+1$ and orders of growth for the number of such points when 2 n d + 1 $2\leqslant n\leqslant d+1$ .

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信