Variation in relaxation of non-photochemical quenching between the founder genotypes of the soybean (Glycine max) nested association mapping population

IF 6.2 1区 生物学 Q1 PLANT SCIENCES
Dhananjay Gotarkar, Anthony Digrado, Yu Wang, Lynn Doran, Ignacio Sparrow-Muñoz, Sarah Chung, Nicholas Lisa, Farwah Wasiq, Gerardo Amaro, Bethany Blakely, Brian W. Diers, Daniel J. Eck, Steven J. Burgess
{"title":"Variation in relaxation of non-photochemical quenching between the founder genotypes of the soybean (Glycine max) nested association mapping population","authors":"Dhananjay Gotarkar,&nbsp;Anthony Digrado,&nbsp;Yu Wang,&nbsp;Lynn Doran,&nbsp;Ignacio Sparrow-Muñoz,&nbsp;Sarah Chung,&nbsp;Nicholas Lisa,&nbsp;Farwah Wasiq,&nbsp;Gerardo Amaro,&nbsp;Bethany Blakely,&nbsp;Brian W. Diers,&nbsp;Daniel J. Eck,&nbsp;Steven J. Burgess","doi":"10.1111/tpj.17219","DOIUrl":null,"url":null,"abstract":"<p>Improving the efficiency of crop photosynthesis has the potential to increase yields. Genetic manipulation showed photosynthesis can be improved by speeding up the relaxation of photoprotective mechanisms during sun-to-shade transitions. However, it is unclear if natural variation in the relaxation of non-photochemical quenching (NPQ) can be exploited in crop breeding programs. To address this issue, we measured six NPQ parameters in the 40 founder lines and common parent of a Soybean Nested Association Mapping (SoyNAM) panel over two field seasons in Illinois. Leaf disks were sampled from plants grown in the field, and induction and relaxation of NPQ were measured under controlled conditions. NPQ parameters did not show consistently variable trends throughout development, and variation between sampling days suggests environmental impacts on NPQ dynamics. Seventeen genotypes were found to show small but consistent differences in NPQ relaxation kinetics relative to a reference line, providing a basis for future mapping studies. Finally, a soybean canopy model predicted available phenotypic variation could result in a 1.6% difference in carbon assimilation when comparing the fastest and slowest relaxing NPQ values. No correlation could be found between yield and rates of NPQ relaxation, but a full test will require an analysis of isogenic lines.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 2","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17219","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17219","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the efficiency of crop photosynthesis has the potential to increase yields. Genetic manipulation showed photosynthesis can be improved by speeding up the relaxation of photoprotective mechanisms during sun-to-shade transitions. However, it is unclear if natural variation in the relaxation of non-photochemical quenching (NPQ) can be exploited in crop breeding programs. To address this issue, we measured six NPQ parameters in the 40 founder lines and common parent of a Soybean Nested Association Mapping (SoyNAM) panel over two field seasons in Illinois. Leaf disks were sampled from plants grown in the field, and induction and relaxation of NPQ were measured under controlled conditions. NPQ parameters did not show consistently variable trends throughout development, and variation between sampling days suggests environmental impacts on NPQ dynamics. Seventeen genotypes were found to show small but consistent differences in NPQ relaxation kinetics relative to a reference line, providing a basis for future mapping studies. Finally, a soybean canopy model predicted available phenotypic variation could result in a 1.6% difference in carbon assimilation when comparing the fastest and slowest relaxing NPQ values. No correlation could be found between yield and rates of NPQ relaxation, but a full test will require an analysis of isogenic lines.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信