{"title":"Enhanced Cycling Performance of Electrospun Nickel Cobalt Manganese Oxide [LiNi0.8Co0.1Mn0.1O2(NCM811)] Cathode for Lithium-Ion Batteries","authors":"JinUk Yoo, Dong Chul Kang, Hyun Chul Kang, Songhun Yoon, Sung Gyu Pyo","doi":"10.1155/er/4663811","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The cathode of a lithium-ion battery (LIB) is made from a slurry of cathode active materials, conductive additives, and binder mixtures, which is blade-coated to fabricate the cathode electrode. The blade coating is a wet coating technology, which requires a heat treatment process after casting to volatilize the solvent. In addition, due to the dense surface, the reaction occurs mainly on the surface during the charge and discharge cycle, which accelerates degradation. To address these problems, this study introduces electrospun coatings during slurry casting. Electrospinning (ES) is a fast, easy, and low-cost process that is not limited by external conditions and is typically used to produce nanofibers. However, if the polymer solution concentration is extremely low, a porous film can be formed by electrospraying. Porous films tend to degrade more slowly because the reaction occurs across the entire electrode. In addition, ES does not require a drying process as the solvent is volatilized during the process. While the blade coating shows 47.13% retention after 100 cycles at 1C, ES shows an improved retention of 75.98%. The application of ES to LIB results in a significant improvement in cycle performance, which can be developed into a breakthrough technology in electrode fabrication.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/4663811","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/4663811","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The cathode of a lithium-ion battery (LIB) is made from a slurry of cathode active materials, conductive additives, and binder mixtures, which is blade-coated to fabricate the cathode electrode. The blade coating is a wet coating technology, which requires a heat treatment process after casting to volatilize the solvent. In addition, due to the dense surface, the reaction occurs mainly on the surface during the charge and discharge cycle, which accelerates degradation. To address these problems, this study introduces electrospun coatings during slurry casting. Electrospinning (ES) is a fast, easy, and low-cost process that is not limited by external conditions and is typically used to produce nanofibers. However, if the polymer solution concentration is extremely low, a porous film can be formed by electrospraying. Porous films tend to degrade more slowly because the reaction occurs across the entire electrode. In addition, ES does not require a drying process as the solvent is volatilized during the process. While the blade coating shows 47.13% retention after 100 cycles at 1C, ES shows an improved retention of 75.98%. The application of ES to LIB results in a significant improvement in cycle performance, which can be developed into a breakthrough technology in electrode fabrication.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system