Multi-Objective Evolutionary Algorithm Based on Decomposition With Orthogonal Experimental Design

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Expert Systems Pub Date : 2024-11-26 DOI:10.1111/exsy.13802
Maowei He, Zhixue Wang, Hanning Chen, Yang Cao, Lianbo Ma
{"title":"Multi-Objective Evolutionary Algorithm Based on Decomposition With Orthogonal Experimental Design","authors":"Maowei He,&nbsp;Zhixue Wang,&nbsp;Hanning Chen,&nbsp;Yang Cao,&nbsp;Lianbo Ma","doi":"10.1111/exsy.13802","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Multi-objective evolutionary optimisation algorithms (MOEAs) have become a widely adopted way of solving the multi-objective optimisation problems (MOPs). The decomposition-based MOEAs demonstrate a promising performance for solving regular MOPs. However, when handling the irregular MOPs, the decomposition-based MOEAs cannot offer a convincing performance because no intersection between weight vector and the Pareto Front (PF) may lead to the same optimal solution assigned to the different weight vectors. To solve this problem, this paper proposes an MOEA based on decomposition with the orthogonal experimental design (MOEA/D-OED) that involves the selection operation, Orthogonal Experimental Design (OED) operation, and adjustment operation. The selection operation is to judge the unpromising weight vectors based on the history data of relative reduction values and convergence degree. The OED method based on the relative reduction function could make an explicit guidance for removing the worthless weight vectors. The adjustment operation brings in an estimation indicator of both diversity and convergence for adding new weight vectors into the interesting regions. To verify the versatility of the proposed MOEA/D-OED, 26 test problems with various PFs are evaluated in this paper. Empirical results have demonstrated that the proposed MOEA/D-OED outperforms eight representative MOEAs on MOPs with various types of PFs, showing promising versatility. The proposed algorithm shows highly competitive performance on all the various MOPs.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.13802","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-objective evolutionary optimisation algorithms (MOEAs) have become a widely adopted way of solving the multi-objective optimisation problems (MOPs). The decomposition-based MOEAs demonstrate a promising performance for solving regular MOPs. However, when handling the irregular MOPs, the decomposition-based MOEAs cannot offer a convincing performance because no intersection between weight vector and the Pareto Front (PF) may lead to the same optimal solution assigned to the different weight vectors. To solve this problem, this paper proposes an MOEA based on decomposition with the orthogonal experimental design (MOEA/D-OED) that involves the selection operation, Orthogonal Experimental Design (OED) operation, and adjustment operation. The selection operation is to judge the unpromising weight vectors based on the history data of relative reduction values and convergence degree. The OED method based on the relative reduction function could make an explicit guidance for removing the worthless weight vectors. The adjustment operation brings in an estimation indicator of both diversity and convergence for adding new weight vectors into the interesting regions. To verify the versatility of the proposed MOEA/D-OED, 26 test problems with various PFs are evaluated in this paper. Empirical results have demonstrated that the proposed MOEA/D-OED outperforms eight representative MOEAs on MOPs with various types of PFs, showing promising versatility. The proposed algorithm shows highly competitive performance on all the various MOPs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems
Expert Systems 工程技术-计算机:理论方法
CiteScore
7.40
自引率
6.10%
发文量
266
审稿时长
24 months
期刊介绍: Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper. As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信