A Ratio Fluorescent Sensor Based on Coumarin and Rhodamine for Sequential Detection of Aluminium Ion and Pyrophosphate and Its Applicability in Arabidopsis Thaliana

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Xianjiao Meng, Yaru Zhang, Dongdong Guo, Jingjing Li
{"title":"A Ratio Fluorescent Sensor Based on Coumarin and Rhodamine for Sequential Detection of Aluminium Ion and Pyrophosphate and Its Applicability in Arabidopsis Thaliana","authors":"Xianjiao Meng,&nbsp;Yaru Zhang,&nbsp;Dongdong Guo,&nbsp;Jingjing Li","doi":"10.1002/slct.202405523","DOIUrl":null,"url":null,"abstract":"<p>A ratio fluorescent sensor <i>N</i>'-((<i>E</i>)-3-((<i>E</i>)-((3′, 6′-bis(diethylamino)-3-oxospiro[isoindoline-1, 9′-xanthen]-2-yl)imino)methyl)-2-hydroxy-5-methylbenzylidene)-7-(diethylamino)-2-oxo-2<i>H</i>-chromene-3-carbohydrazide (<b>I)</b> based on the FRET mechanism was synthesized using coumarin as the donor and rhodamine as the receptor. Its structure was characterized by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and ESI-MS. The sensing performance of sensor <b>I</b> was studied using fluorescence spectrophotometry, and the detection mechanism was studied using density functional theory. The results indicated that in MeOH/H<sub>2</sub>O medium, sensor <b>I</b> exhibits a significant fluorescence enhanced response to Al<sup>3+</sup>, with a detection limit of 5.8 × 10<sup>−7</sup> mol/L. In addition, complex <b>I</b>-Al<sup>3+</sup>exhibits a significant fluorescence quenching response to PPi, with a detection limit of 3.7 × 10<sup>−7</sup> mol/L, indicating that sensor <b>I</b> has high sensitivity and anti-interference ability for the recognition and detection of Al<sup>3+</sup> and PPi. Through the analysis of complexation curves, it was found that the complexation ratio of sensor <b>I</b> to Al<sup>3+</sup> was 1:1 and complex <b>I</b>-Al<sup>3+</sup> to PPi was 2:1, and the cyclic response test could be performed stably for more than four times. The imaging results of <i>Arabidopsis thaliana</i> show that sensor <b>I</b> has low toxicity and good biocompatibility, which provides a way for the detection of Al<sup>3+</sup> in plants.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"10 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202405523","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A ratio fluorescent sensor N'-((E)-3-((E)-((3′, 6′-bis(diethylamino)-3-oxospiro[isoindoline-1, 9′-xanthen]-2-yl)imino)methyl)-2-hydroxy-5-methylbenzylidene)-7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide (I) based on the FRET mechanism was synthesized using coumarin as the donor and rhodamine as the receptor. Its structure was characterized by FT-IR, 1H NMR, 13C NMR, and ESI-MS. The sensing performance of sensor I was studied using fluorescence spectrophotometry, and the detection mechanism was studied using density functional theory. The results indicated that in MeOH/H2O medium, sensor I exhibits a significant fluorescence enhanced response to Al3+, with a detection limit of 5.8 × 10−7 mol/L. In addition, complex I-Al3+exhibits a significant fluorescence quenching response to PPi, with a detection limit of 3.7 × 10−7 mol/L, indicating that sensor I has high sensitivity and anti-interference ability for the recognition and detection of Al3+ and PPi. Through the analysis of complexation curves, it was found that the complexation ratio of sensor I to Al3+ was 1:1 and complex I-Al3+ to PPi was 2:1, and the cyclic response test could be performed stably for more than four times. The imaging results of Arabidopsis thaliana show that sensor I has low toxicity and good biocompatibility, which provides a way for the detection of Al3+ in plants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信