Sensing Applications of PT-Symmetry in Non-Hermitian Photonic Systems

IF 4.4 Q1 OPTICS
Zuoxian Wang, Zihua Liang, Jinsheng Hu, Peng Zhou, Lu Liu, Gen Hu, Weiyi Wang, Mao Ye
{"title":"Sensing Applications of PT-Symmetry in Non-Hermitian Photonic Systems","authors":"Zuoxian Wang,&nbsp;Zihua Liang,&nbsp;Jinsheng Hu,&nbsp;Peng Zhou,&nbsp;Lu Liu,&nbsp;Gen Hu,&nbsp;Weiyi Wang,&nbsp;Mao Ye","doi":"10.1002/qute.202400349","DOIUrl":null,"url":null,"abstract":"<p>In recent years, rapid advances in non-Hermitian physics and PT-symmetry have brought new opportunities for ultra-sensitive sensing. Especially the presence of controllable non-conservative processes in optical and photonic systems has triggered the development of singularity-based sensing. By flexibly tuning gain, loss, and coupling strength, a series of high-resolution sensing approaches can be realized, with the potential of on-chip integration. Another important non-Hermitian singularity is the coherent perfect absorption-lasing (CPAL) point in the PT-broken phase, which manifests the coexistence of lasing and CPA, exhibiting intriguing properties with considerable sensing potential. As a crucial method for quantum sensing and metrology, the interaction between light and alkali-metal atomic ensembles promises unprecedented sensitivity in the measurement of ultra-weak magnetic field, inertia, and time. Therefore, extending the study of PT-symmetry and singularity-based sensing from conventional solid-state wave systems to diffusive systems such as atomic ensembles is attracting wide attention. In this review, the development of singularity-based sensing in PT/anti-PT symmetric non-Hermitian systems is summarized, with a special focus on photonic platforms including integration with waveguides, microcavities, metasurface, etc. In addition, sensing applications with discussion further extended to atomic ensembles, projecting future research trends in the field.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, rapid advances in non-Hermitian physics and PT-symmetry have brought new opportunities for ultra-sensitive sensing. Especially the presence of controllable non-conservative processes in optical and photonic systems has triggered the development of singularity-based sensing. By flexibly tuning gain, loss, and coupling strength, a series of high-resolution sensing approaches can be realized, with the potential of on-chip integration. Another important non-Hermitian singularity is the coherent perfect absorption-lasing (CPAL) point in the PT-broken phase, which manifests the coexistence of lasing and CPA, exhibiting intriguing properties with considerable sensing potential. As a crucial method for quantum sensing and metrology, the interaction between light and alkali-metal atomic ensembles promises unprecedented sensitivity in the measurement of ultra-weak magnetic field, inertia, and time. Therefore, extending the study of PT-symmetry and singularity-based sensing from conventional solid-state wave systems to diffusive systems such as atomic ensembles is attracting wide attention. In this review, the development of singularity-based sensing in PT/anti-PT symmetric non-Hermitian systems is summarized, with a special focus on photonic platforms including integration with waveguides, microcavities, metasurface, etc. In addition, sensing applications with discussion further extended to atomic ensembles, projecting future research trends in the field.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信