Evidence of High-Pressure Metamorphism Along the Mahanadi Shear Zone in the Eastern Ghats Province, Eastern India: Implications on Tectonics and Continental Assembly Involving India and East Antarctica

IF 3.5 2区 地球科学 Q1 GEOLOGY
Shuvankar Karmakar, Sankar Bose, Gautam Ghosh, Kaushik Das, Nilanjana Sorcar, Sneha Mukherjee
{"title":"Evidence of High-Pressure Metamorphism Along the Mahanadi Shear Zone in the Eastern Ghats Province, Eastern India: Implications on Tectonics and Continental Assembly Involving India and East Antarctica","authors":"Shuvankar Karmakar,&nbsp;Sankar Bose,&nbsp;Gautam Ghosh,&nbsp;Kaushik Das,&nbsp;Nilanjana Sorcar,&nbsp;Sneha Mukherjee","doi":"10.1111/jmg.12797","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A suite of mafic granulite enclaves within mylonitised felsic gneiss occurring along the E-W trending Mahanadi Shear Zone of the Eastern Ghats Province preserves evidence of high-pressure metamorphism. Garnet-clinopyroxene-bearing mafic granulite contains a mineral assemblage of garnet + clinopyroxene + plagioclase + quartz + rutile which was formed after dehydration melting of a hornblende-bearing protolith during M<sub>1</sub> metamorphism that peaked at 1.1–1.4 GPa, 760°C–840°C. The retrograde stage (M<sub>1R</sub>) is marked by the formation of hornblende and symplectic intergrowth of clinopyroxene + plagioclase + orthopyroxene after garnet at 0.8–0.9 GPa, 760°C–810°C, suggesting an isothermal decompression type <i>P–T</i> path. The whole rock trace element and REE characteristics suggest a MORB-OIB protolith for the mafic granulites. The host felsic gneiss has a granitic protolith which was emplaced in an arc setting. The rocks exposed south of the Mahanadi Shear Zone in the Phulbani domain are represented by granulites with contrasting metamorphic characteristics. The garnet-orthopyroxene-bearing mafic granulite within coarse-grained charnockite and the aluminous granulite within felsic gneiss show evidence of biotite dehydration melting. The peak M<sub>1</sub> assemblage in the aluminous granulite is represented by the assemblage spinel + garnet + quartz + plagioclase + K-feldspar which was stable at 0.70–0.74 GPa, 904°C–935°C. M<sub>1R</sub> in this rock is characterised by coronas of garnet and sillimanite over spinel and the formation of matrix biotite at 707°C–806°C by near-isobaric cooling. Similar isobaric cooling has been documented from the formation of garnet, clinopyroxene and quartz coronas on orthopyroxene in mafic granulite and garnet and quartz coronas on clinopyroxene, wollastonite and calcite in calc-silicate granulite. The juxtaposition of lower crustal rocks showing clockwise and counterclockwise <i>P–T</i> paths across the Mahanadi Shear Zone implies a paired metamorphic character in a subduction–collision setting. Zircon U-Pb and monazite U-Th-total Pb data show a complex history of the rock suite. The enclave suite of rocks within the Mahanadi Shear Zone underwent peak M<sub>1</sub> metamorphism at ca. 980–960 Ma which was followed by decompression to a shallower level by ca. 960 Ma when the host granitic magma crystallised. Rocks occurring in the Phulbani domain (southernly placed crustal domain), on the other hand, underwent ultrahigh temperature metamorphism at shallower crustal levels broadly at the same time. We argue that the southern Phulbani domain of the Eastern Ghats Province, India, collided with the Angul-Prydz domain of the Rayner Province, East Antarctica which eventually caused underthrusting of the former below the latter across the Mahanadi Shear Zone. In the context of the Eastern Ghats-Rayner reconstruction, this indicates the closure of the intervening Mawson Sea. A second metamorphic event (M<sub>2</sub>) reworked the exhumed deep crustal rocks at ca. 900 Ma during the final docking of the Eastern Ghats-Rayner belt against cratonic India. Our results clearly show that the Angul domain is an exotic block, and the Mahanadi Shear Zone is a terrane boundary shear zone suturing discrete domains of the Rayner-Eastern Ghats orogen.</p>\n </div>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"43 2","pages":"123-160"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12797","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A suite of mafic granulite enclaves within mylonitised felsic gneiss occurring along the E-W trending Mahanadi Shear Zone of the Eastern Ghats Province preserves evidence of high-pressure metamorphism. Garnet-clinopyroxene-bearing mafic granulite contains a mineral assemblage of garnet + clinopyroxene + plagioclase + quartz + rutile which was formed after dehydration melting of a hornblende-bearing protolith during M1 metamorphism that peaked at 1.1–1.4 GPa, 760°C–840°C. The retrograde stage (M1R) is marked by the formation of hornblende and symplectic intergrowth of clinopyroxene + plagioclase + orthopyroxene after garnet at 0.8–0.9 GPa, 760°C–810°C, suggesting an isothermal decompression type P–T path. The whole rock trace element and REE characteristics suggest a MORB-OIB protolith for the mafic granulites. The host felsic gneiss has a granitic protolith which was emplaced in an arc setting. The rocks exposed south of the Mahanadi Shear Zone in the Phulbani domain are represented by granulites with contrasting metamorphic characteristics. The garnet-orthopyroxene-bearing mafic granulite within coarse-grained charnockite and the aluminous granulite within felsic gneiss show evidence of biotite dehydration melting. The peak M1 assemblage in the aluminous granulite is represented by the assemblage spinel + garnet + quartz + plagioclase + K-feldspar which was stable at 0.70–0.74 GPa, 904°C–935°C. M1R in this rock is characterised by coronas of garnet and sillimanite over spinel and the formation of matrix biotite at 707°C–806°C by near-isobaric cooling. Similar isobaric cooling has been documented from the formation of garnet, clinopyroxene and quartz coronas on orthopyroxene in mafic granulite and garnet and quartz coronas on clinopyroxene, wollastonite and calcite in calc-silicate granulite. The juxtaposition of lower crustal rocks showing clockwise and counterclockwise P–T paths across the Mahanadi Shear Zone implies a paired metamorphic character in a subduction–collision setting. Zircon U-Pb and monazite U-Th-total Pb data show a complex history of the rock suite. The enclave suite of rocks within the Mahanadi Shear Zone underwent peak M1 metamorphism at ca. 980–960 Ma which was followed by decompression to a shallower level by ca. 960 Ma when the host granitic magma crystallised. Rocks occurring in the Phulbani domain (southernly placed crustal domain), on the other hand, underwent ultrahigh temperature metamorphism at shallower crustal levels broadly at the same time. We argue that the southern Phulbani domain of the Eastern Ghats Province, India, collided with the Angul-Prydz domain of the Rayner Province, East Antarctica which eventually caused underthrusting of the former below the latter across the Mahanadi Shear Zone. In the context of the Eastern Ghats-Rayner reconstruction, this indicates the closure of the intervening Mawson Sea. A second metamorphic event (M2) reworked the exhumed deep crustal rocks at ca. 900 Ma during the final docking of the Eastern Ghats-Rayner belt against cratonic India. Our results clearly show that the Angul domain is an exotic block, and the Mahanadi Shear Zone is a terrane boundary shear zone suturing discrete domains of the Rayner-Eastern Ghats orogen.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
11.80%
发文量
57
审稿时长
6-12 weeks
期刊介绍: The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信