Machine learning for surficial geologic mapping

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Sarah E. Johnson, William C. Haneberg
{"title":"Machine learning for surficial geologic mapping","authors":"Sarah E. Johnson,&nbsp;William C. Haneberg","doi":"10.1002/esp.6032","DOIUrl":null,"url":null,"abstract":"<p>Surficial geologic maps contribute to decisions regarding natural hazard mitigation, land-use planning and infrastructure development. However, geologic maps may not adequately convey the uncertainty inherent in the information shown. In this study, we use machine learning and lidar elevation data to produce surficial geologic maps for parts of two quadrangles in Kentucky. We measured the performance of eight supervised machine learning methods by comparing the overall accuracy and F1 scores for each geologic unit. Surficial geologic units include residuum, colluvium, alluvial and lacustrine terraces, high-level alluvial deposits and modern alluvium. The importance of 41 moving-window geomorphic variables, including slope, roughness, residual topography, curvature, topographic wetness index, vertical distance to channel network and topographic flatness, was reduced to 12 variables by ranking the importance of each variable. The gradient-boosted trees model produced the classifier with the greatest overall accuracy, producing maps with overall accuracies of 87.4% to 90.7% in areas of simple geology and 80.7% to 81.6% in areas with more complex geology. The model produced high F1 scores of up to 96.2% for colluvium but was not as good at distinguishing between units found in the same geomorphic position, such as high-level alluvium and residuum, both of which are found on ridgelines. Probability values for each geologic unit at each cell are conveyed using gradations of colour and eliminate the need for drawn boundaries between units. Machine learning may be used to create accurate surficial geologic maps in areas of simple geology; in more complex areas, highlight that additional information obtained in the field is necessary to distinguish between units.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.6032","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Surficial geologic maps contribute to decisions regarding natural hazard mitigation, land-use planning and infrastructure development. However, geologic maps may not adequately convey the uncertainty inherent in the information shown. In this study, we use machine learning and lidar elevation data to produce surficial geologic maps for parts of two quadrangles in Kentucky. We measured the performance of eight supervised machine learning methods by comparing the overall accuracy and F1 scores for each geologic unit. Surficial geologic units include residuum, colluvium, alluvial and lacustrine terraces, high-level alluvial deposits and modern alluvium. The importance of 41 moving-window geomorphic variables, including slope, roughness, residual topography, curvature, topographic wetness index, vertical distance to channel network and topographic flatness, was reduced to 12 variables by ranking the importance of each variable. The gradient-boosted trees model produced the classifier with the greatest overall accuracy, producing maps with overall accuracies of 87.4% to 90.7% in areas of simple geology and 80.7% to 81.6% in areas with more complex geology. The model produced high F1 scores of up to 96.2% for colluvium but was not as good at distinguishing between units found in the same geomorphic position, such as high-level alluvium and residuum, both of which are found on ridgelines. Probability values for each geologic unit at each cell are conveyed using gradations of colour and eliminate the need for drawn boundaries between units. Machine learning may be used to create accurate surficial geologic maps in areas of simple geology; in more complex areas, highlight that additional information obtained in the field is necessary to distinguish between units.

Abstract Image

地表地质制图的机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信