Modulation of diurnal variation in rainfall associated with tropical cyclones over the East Asia–Western North Pacific region by environmental vertical wind shear
{"title":"Modulation of diurnal variation in rainfall associated with tropical cyclones over the East Asia–Western North Pacific region by environmental vertical wind shear","authors":"Na Wei, Qian Wang, Xinghai Zhang, Dajun Zhao","doi":"10.1002/asl.1281","DOIUrl":null,"url":null,"abstract":"<p>Vertical wind shear (VWS), as an important dynamic factor influencing tropical cyclone rainfall (TCR), has a remarkable diurnal cycle of variation over the East Asia–western North Pacific region. The magnitude of tropical cyclone (TC)-experienced VWS has enhanced amplitude but different phases over the South China Sea (SCS) and coastal East China (CEC) compared with that over the open ocean. Diurnal variation in TCR over the SCS shows statistically significant correlation with that of VWS. The convection concentrated in the downshear-left quadrant strengthens markedly when VWS becomes large, thereby delaying the peak rainfall in the inner core of the TC and enhancing the amplitude of the diurnal cycle of TCR at ~09 local standard time. Over CEC, the diurnal signal of TCR is very weak but statistically significant in the downshear-left and upshear-right quadrants with opposite phase, illustrating the change in asymmetry of the spatial distribution of TCR induced by the large VWS diurnal cycle. The findings of this study could provide reference for improved forecasting of TCR on the fine temporal scale.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"26 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1281","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1281","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Vertical wind shear (VWS), as an important dynamic factor influencing tropical cyclone rainfall (TCR), has a remarkable diurnal cycle of variation over the East Asia–western North Pacific region. The magnitude of tropical cyclone (TC)-experienced VWS has enhanced amplitude but different phases over the South China Sea (SCS) and coastal East China (CEC) compared with that over the open ocean. Diurnal variation in TCR over the SCS shows statistically significant correlation with that of VWS. The convection concentrated in the downshear-left quadrant strengthens markedly when VWS becomes large, thereby delaying the peak rainfall in the inner core of the TC and enhancing the amplitude of the diurnal cycle of TCR at ~09 local standard time. Over CEC, the diurnal signal of TCR is very weak but statistically significant in the downshear-left and upshear-right quadrants with opposite phase, illustrating the change in asymmetry of the spatial distribution of TCR induced by the large VWS diurnal cycle. The findings of this study could provide reference for improved forecasting of TCR on the fine temporal scale.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.