A. A. Saikin, A. Y. Drozdov, A. N. Jaynes, D. Kondrashov, A. Boyd, Y. Y. Shprits
{"title":"The Role of Local Acceleration and Radial Diffusion in Multi-MeV Electron Flux Enhancements","authors":"A. A. Saikin, A. Y. Drozdov, A. N. Jaynes, D. Kondrashov, A. Boyd, Y. Y. Shprits","doi":"10.1029/2024JA033180","DOIUrl":null,"url":null,"abstract":"<p>During the Van Allen Probes era, several multi-MeV (>4 MeV) electron flux enhancements were observed. The cause of electron acceleration up to multi-MeV remains an ongoing science topic. In this study, we focus on examining the relationship between phase space density (PSD) radial profile shapes and the occurrence of multi-MeV electron flux enhancement events. This will determine which process (local acceleration or radial diffusion) is dominant in producing multi-MeV electron flux enhancements at a specific L*. Growing peaks in PSD radial profiles are associated with the local acceleration (i.e., a wave-particle interaction) of multi-MeV electrons. For each growing peak in PSD, we determined the L* where the local acceleration occurs for each respective electron energy. Similarly, we also identify which PSD profiles are related to acceleration via radial diffusion profiles. Both sets of profiles are compared with the Van Allen Probe-A observed multi-MeV electron flux enhancements. Results show that both mechanisms (local acceleration and radial diffusion) can facilitate multi-MeV electron acceleration, however each mechanism has a preferable L* region where it is the dominant acceleration process.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033180","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
During the Van Allen Probes era, several multi-MeV (>4 MeV) electron flux enhancements were observed. The cause of electron acceleration up to multi-MeV remains an ongoing science topic. In this study, we focus on examining the relationship between phase space density (PSD) radial profile shapes and the occurrence of multi-MeV electron flux enhancement events. This will determine which process (local acceleration or radial diffusion) is dominant in producing multi-MeV electron flux enhancements at a specific L*. Growing peaks in PSD radial profiles are associated with the local acceleration (i.e., a wave-particle interaction) of multi-MeV electrons. For each growing peak in PSD, we determined the L* where the local acceleration occurs for each respective electron energy. Similarly, we also identify which PSD profiles are related to acceleration via radial diffusion profiles. Both sets of profiles are compared with the Van Allen Probe-A observed multi-MeV electron flux enhancements. Results show that both mechanisms (local acceleration and radial diffusion) can facilitate multi-MeV electron acceleration, however each mechanism has a preferable L* region where it is the dominant acceleration process.